Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(7): 669, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935154

ABSTRACT

Soil fluoride is a critical determinant of soil fertility, human health and crop productivity. Soil fluoride can be increased by climatic conditions, irrigation water and anthropogenic activity, and it is important to control fluoride by understanding the complex relationships between atmospheric conditions and water systems. In this research, a detailed focus is on the hydrological and meteorological aspects of soil fluorides in semi-saturated and saturated soils to discuss the impact of irrigation, capillary rise and the combination of rainfall and anthropogenic activities such as fertilizer application on the soils in the dry spell and monsoon seasons of 2021 and 2022. A Sentinel-1 data can be used to estimate fluoride levels to the above soil conditions. In an effort to estimate fluoride levels in different hydro-meteorological scenarios, we have put forward a hypothesis that focuses on understanding the potential connections between hydro-meteorological factors (precipitation, groundwater levels, and temperature) and the levels of fluoride. The findings indicate that the extensive use of groundwater for irrigation leads to a rise in fluoride levels, posing a significant threat to crop health over time. Furthermore, the combined effects of irrigation and upheaval leaching on fluoride levels have shown strong statistical conformity (R2 > 0.85) with the relevant field-measured fluoride data for the year 2022. Importantly, areas affected by F upheaval are more sensitive to the sand and clay percentage in the soil because potential and dispersion behaviour enlarge the capillaries to decelerate the upward movement. A region-based discussion details the factors contributing to the increase of fluoride in soil helpful in taking remedial measures and mitigation plans.


Subject(s)
Environmental Monitoring , Fluorides , Microwaves , Soil Pollutants , Soil , Fluorides/analysis , Soil/chemistry , Soil Pollutants/analysis , Remote Sensing Technology , Groundwater/chemistry
2.
Environ Sci Pollut Res Int ; 31(20): 29071-29087, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565821

ABSTRACT

Fluoride and its constituents in soil affect plant growth and public health. In this study, soil fluoride was measured for the semi-arid regions in southern India, using Sentinel-1 data in conjunction with the dual polarimetric saline-associated fluoride model (also known as fluoride model). A loss angle was estimated from laboratory-based dielectric components of soil samples with strong electrical conductivity under high and low fluoride conditions. The conductivity loss angle and real and imaginary dielectric constants were used to study fluoride salt's dielectric behavior. The imaginary dielectric component sensitive to dielectric loss could predict fluoride across large areas over time. This was statistically analyzed with R2 = 0.86, RMSE = 1.90, and bias = 0.35 showing a promising depiction that C-band SAR data can distinguish fluoride levels over varied clay soil and soil with varying vegetation development. Moreover, the association between biomass and simulated fluoride helped to identify fluoride-tolerant and non-tolerant crops. The study found that Sorghum and Oryza sativa tolerate saline-associated fluoride, whereas Peanut and Allium do not. Furthermore, the model successfully retrieves fluoride from saline salts based on tangent loss.


Subject(s)
Agriculture , Fluorides , Soil Pollutants , Soil , Fluorides/analysis , Soil/chemistry , Soil Pollutants/analysis , India , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...