Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 765: 142767, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33097253

ABSTRACT

Controlling phosphorus (P) loss from land to water bodies is of immense scientific and societal interest and scrutiny. We investigated P forms in a longitudinal gradient in three typical urban junctions: stormwater from a residential catchment, pond discharges from a stormwater retention pond, and 13 coastal waters (rivers and estuary). Concentrations of total P (TP) were 122.7 ± 99.1 µg/L in the stormwater, 89.7 ± 35.8 µg/L in the pond discharges, and 212.1 ± 51.2 µg/L in 13 coastal water sites. Lower P concentrations in pond discharges reflect P attenuation in the stormwater pond, and higher P concentrations in surface waters are likely attributed to the additional contributing P sources in the watershed. Dissolved reactive P (DRP) was 38% of TP load in stormwater and 46% of TP concentrations in surface water sites, whereas particulate unreactive P (PUP) was 52% of TP load in pond discharges. The first-flush strength of P forms in the stormwater indicated the dominance of particulate P over dissolved P. More particulate P was transported in the early stages of storms due to the runoff of P associated with sediment, plant materials, and built up on impervious surfaces. Whereas more dissolved P was transported in the later stages of storms likely due to the flushing of P, as exacerbated by greater runoff amounts, from the landscape sources, i.e., grass clippings, tree leaves, and soil. In the pond discharges, DRP was a minor form suggesting its utilization by bacteria and algae in the pond. The high concentration and proportion of DRP in surface waters suggest an abundance of bioavailable P in urban waters. These results imply that treatment designs in urban areas should consider ways to remove P in urban landscapes focusing on attenuating P before the initiation of runoff and discharge to surface waters to protect downstream water quality.

2.
Waste Manag Res ; 37(9): 951-955, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31378160

ABSTRACT

The use of municipal solid waste incinerator bottom ash for road-base construction is an accepted practice in Europe and Asia, and of growing interest in the US. It is common practice to cure bottom ash by stockpiling it for several weeks before using it in this application. The curing process exposes the bottom ash to atmospheric carbon dioxide, which promotes carbonation, lowering its pH (making it less alkaline), and making many heavy metals less soluble. While this process makes bottom ash a more environmentally acceptable material, it takes time and requires additional handling. This article investigates a concept to facilitate carbonation of bottom ash in its compacted state, potentially eliminating the stockpile curing process. It is demonstrated here that blending a small amount of organic material with bottom ash will accelerate carbonation and lower pH in compacted samples by providing a carbon source for bacteria to produce carbon dioxide. Different quantities of biosolids (1%, 2%, 3%, and 5% by mass) were added to compacted bottom ash samples to examine the effect of organic materials on carbonation, and results were compared with a compacted control bottom ash sample. The pH of the control bottom ash sample decreased from 12.07 to 9.78 after 63 days, while the pH of the sample containing 5% biosolids decreased from 11.70 to 9.74 in only 7 days and to 8.18 after 63 days. Physical testing was conducted to examine suitability for beneficial use. The results indicate that bottom ash containing less than 3% biosolids met minimum bearing strength requirements for road base.


Subject(s)
Coal Ash , Metals, Heavy , Asia , Carbon , Europe , Incineration , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...