Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Cachexia Sarcopenia Muscle ; 12(6): 1570-1581, 2021 12.
Article in English | MEDLINE | ID: mdl-34268902

ABSTRACT

BACKGROUND: A reduction in the skeletal muscle mass worsens the prognosis of patients with various cancers. Our previous studies indicated that cisplatin administration to mice caused muscle atrophy. This is a concern for human patients receiving cisplatin. The insulin-like growth factor 1 (IGF-1)/phosphoinositide 3-kinase (PI3K)/Akt pathway stimulates the rate of protein synthesis in skeletal muscle. Thus, IGF-I can be a central therapeutic target for preventing the loss of skeletal muscle mass in muscle atrophy, although it remains unclear whether pharmacological activation of the IGF-1/PI3K/Akt pathway attenuates muscle atrophy induced by cisplatin. In this study, we examined whether exogenous recombinant human IGF-1 attenuated cisplatin-induced muscle atrophy. METHODS: Male C57BL/6J mice (8-9 weeks old) were injected with cisplatin or saline for four consecutive days. On Day 5, quadriceps muscles were isolated. Mecasermin (recombinant human IGF-1) or the vehicle control was subcutaneously administered 30 min prior to cisplatin administration. A dietary restriction group achieving weight loss equivalent to that caused by cisplatin administration was used as a second control. C2C12 myotubes were treated with cisplatin with/without recombinant mouse IGF-1. The skeletal muscle protein synthesis/degradation pathway was analysed by histological and biochemical methods. RESULTS: Cisplatin reduced protein level of IGF-1 by about 85% compared with the vehicle group and also reduced IGF-1/PI3K/Akt signalling in skeletal muscle. Under this condition, the protein levels of muscle ring finger protein 1 (MuRF1) and atrophy gene 1 (atrogin-1) were increased in quadriceps muscles (MuRF1; 3.0 ± 0.1 folds, atrogin-1; 3.0 ± 0.3 folds, P < 0.001, respectively). The administration of a combination of cisplatin and IGF-1 significantly suppressed the cisplatin-induced downregulation of IGF-1/PI3K/Akt signalling and upregulation of MuRF1 and atrogin-1 (up to 1.6 ± 0.3 and 1.5 ± 0.4 folds, P < 0.001, respectively), resulting in diminished muscular atrophy. IGF-1 showed similar effects in cisplatin-treated C2C12 myotubes, as well as the quadriceps muscle in mice. CONCLUSIONS: The downregulation of IGF-1 expression in skeletal muscle might be one of the factors playing an important role in the development of cisplatin-induced muscular atrophy. Compensating for this downregulation with exogenous IGF-1 suggests that it could be a therapeutic target for limiting the loss of skeletal muscle mass in cisplatin-induced muscle atrophy.


Subject(s)
Insulin-Like Growth Factor I , Phosphatidylinositol 3-Kinases , Animals , Cisplatin/adverse effects , Humans , Male , Mice , Mice, Inbred C57BL , Muscle Proteins/genetics , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy , Ubiquitin-Protein Ligases
2.
Biochem Biophys Rep ; 26: 101006, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33997319

ABSTRACT

Diacylglycerol kinase (DGK) η translocates from the cytoplasm to punctate vehicles via osmotic shock. Apoptosis signal-regulating kinase (ASK) 3 (MAP kinase kinase kinase (MAPKKK) 15) is also reported to respond to osmotic shock. Therefore, in the present study, we examined the subcellular localization of DGKη and ASK3 expressed in COS-7 cells under osmotic stress. We found that DGKη was almost completely colocalized with ASK3 in punctate structures in response to osmotic shock. In contrast, DGKδ, which is closely related to DGKη structurally, was not colocalized with ASK3, and DGKη failed to colocalize with another MAPKKK, C-Raf, even under osmotic stress. The structures in which DGKη and ASK3 localized were not stained with stress granule makers. Notably, DGKη strongly interacted with ASK3 in an osmotic shock-dependent manner. These results indicate that DGKη and ASK3 undergo osmotic shock-dependent colocalization and associate with each other in specialized structures.

3.
FEBS Lett ; 595(9): 1313-1321, 2021 05.
Article in English | MEDLINE | ID: mdl-33599293

ABSTRACT

The molecular mechanisms generating the mania-like abnormal behaviors caused by diacylglycerol (DG) kinase (DGK) η deficiency remain unclear. Here, we found that DGKη knockout markedly increased dopamine (DA) levels in the midbrain (DA-producing region, 2.8-fold) and cerebral cortex (DA projection region, 1.2-fold). Moreover, DGKη deficiency significantly augmented phosphorylated DA transporter (DAT) levels (1.4-fold increase), which induce DA efflux to the synaptic cleft, in the cerebral cortex. Moreover, phosphorylation levels of protein kinase C-ß, which is activated by DG and involved in DAT phosphorylation, were also increased. DAT expressed in Neuro-2a cells recruited DGKη to the plasma membrane and colocalized with it. These results strongly suggest that dopaminergic hyperfunction caused by DGKη deficiency in the brain leads to mania-like behaviors.


Subject(s)
Brain/metabolism , Diacylglycerol Kinase/genetics , Dopamine Plasma Membrane Transport Proteins/genetics , Protein Kinase C beta/genetics , Animals , Brain/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Diacylglycerol Kinase/deficiency , Dopamine/genetics , Dopamine/metabolism , Humans , Mice , Mice, Knockout/genetics
4.
FEBS Lett ; 594(11): 1787-1796, 2020 06.
Article in English | MEDLINE | ID: mdl-32134507

ABSTRACT

Serotonin transporter (SERT) is involved in serotonergic system regulation and in the pathophysiology/therapeutics of serotonin-/SERT-related diseases such as obsessive-compulsive disorder, depression, autism, and schizophrenia. We recently revealed that diacylglycerol (DG) kinase (DGK) δ induces ubiquitination/degradation of SERT in a DGK activity-dependent manner through Praja-1 E3 ubiquitin-protein ligase. However, it is still unclear how Praja-1 activity is regulated by DGKδ. Here, we reveal that 1-stearoyl-2-docosahexaenoyl (18:0/22:6)-phosphatidic acid (PA) and 18:0/22:6-DG are simultaneously decreased and accumulated, respectively, in the DGKδ-knockout mouse brain, indicating that DGKδ selectively phosphorylates 18:0/22:6-DG to generate 18:0/22:6-PA. Moreover, we find that 18:0/22:6-PA selectively binds to Praja-1 and enhances its activity. These results strongly suggest that 18:0/22:6-PA generated by DGKδ activates Praja-1 to degrade SERT in the brain.


Subject(s)
Brain/metabolism , Phosphatidic Acids/chemistry , Phosphatidic Acids/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , COS Cells , Chlorocebus aethiops , Diacylglycerol Kinase/metabolism , Enzyme Activation , Male , Mice , Substrate Specificity
5.
Biochem Biophys Rep ; 19: 100660, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31297456

ABSTRACT

We have revealed that diacylglycerol kinase η (DGKη)-knockout (KO) mice display bipolar disorder (BPD) remedy-sensitive mania-like behaviors. However, the molecular mechanisms causing the mania-like abnormal behaviors remain unclear. In the present study, microarray analysis was performed to determine global changes in gene expression in the DGKη-KO mouse brain. We found that the DGKη-KO brain had 43 differentially expressed genes and the following five affected biological pathways: "neuroactive ligand-receptor interaction", "transcription by RNA polymerase II", "cytosolic calcium ion concentration", "Jak-STAT signaling pathway" and "ERK1/2 cascade". Interestingly, mRNA levels of prolactin and growth hormone, which are augmented in BPD patients and model animals, were most strongly increased. Notably, all five biological pathways include at least one gene among prolactin, growth hormone, forkhead box P3, glucagon-like peptide 1 receptor and interleukin 1ß, which were previously implicated in BPD. Consistent with the microarray data, phosphorylated ERK1/2 levels were decreased in the DGKη-KO brain. Microarray analysis showed that the expression levels of several glycerolipid metabolism-related genes were also changed. Liquid chromatography-mass spectrometry revealed that several polyunsaturated fatty acid (PUFA)-containing phosphatidic acid (PA) molecular species were significantly decreased as a result of DGKη deficiency, suggesting that the decrease affects PUFA metabolism. Intriguingly, the PUFA-containing lysoPA species were markedly decreased in DGKη-KO mouse blood. Taken together, our study provides not only key broad knowledge to gain novel insights into the underlying mechanisms for the mania-like behaviors but also information for developing BPD diagnostics.

SELECTION OF CITATIONS
SEARCH DETAIL