Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(2): e24352, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293377

ABSTRACT

Hyperlipidemia accounts for about 17 million deaths worldwide each year. High cost and side effects have limited the use of conventional anti-lipidaemic agents in some cases, majority of whom resort to traditional medicine. The current research focused on validating the safety and efficacy of a herbal product, 'LIPO A' used in the management of hyperlipidaemia. Induction of hyperlipidaemia was achieved by oral administration of 3 mL of cholesterol in coconut oil for 4 weeks in male Sprague Dawley rats with water available as 40 % sucrose. Subsequently, the animals were treated with 100, 200 and 400 mg/kg of the product 'LIPO A' for 4 additional weeks with atorvastatin as reference drug (at 2 mg/kg body weight). Blood samples were taken for serum biochemistry and atherogenic ratios were then calculated. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) scavenging assay, total antioxidant capacity, physicochemical and phytochemical analysis were also carried out using standard methods. Treatment resulted in a dose-dependent reduction in total cholesterol with maximum reduction of 46.01 % at 400 mg/kg compared to atorvastatin with 49.30 %. There were significant changes in the low-density lipoprotein cholesterol and high-density lipoprotein cholesterol (LDL-c/HDL-c) and Total Cholesterol (TC/HDL-c) ratios which measures the atherogenic and coronary risk indices respectively. Acute and subacute toxicity studies did not reveal any signs of toxicity. High Performance Liquid Chromatography (HPLC) fingerprint revealed six well resolved peaks with two prominent compounds with retention times 24.88 and 23.95 min, which could serve as quality control markers for the product. The herbal product showed considerable antihyperlipidemic and antioxidant actions in rodent models and lend credence to its use in traditional medicine for hyperlipidaemia.

2.
Heliyon ; 9(11): e21692, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37954382

ABSTRACT

Xylia evansii is widely used in traditional medicine to stop bleeding gums and treat wounds. This study was undertaken to assess the wound healing activity and toxicity profile of the stem bark methanol extract of X. evansii (XES). Wound healing activity was determined by the dermal excision model in rats. The free radical scavenging capacity, antioxidant activity, total phenolic and flavonoid contents were evaluated by the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, total antioxidant capacity (TAC), aluminum chloride colorimetric and Folin Ciocalteu methods respectively. Acute and sub-acute oral toxicity assessment was performed following the Organization for Economic Co-operation and Development guidelines. Significant (p < 0.05) dose-dependent wound healing effect, similar to that of 1 % silver sulphadiazine was elicit by the 10, 15 and 20 %w/w XES ointments. The highest effect was demonstrated by XES 20 %w/w which resulted in 98.3 % wound surface closure by day 9 of treatment (p < 0.0001). The total phenolic and flavonoid contents were determined to be 381.2 ± 12.57 mg/g gallic acid equivalent (GAE) and 460 ± 29.07 mg/g quercetin equivalent respectively. XES exhibited remarkable free radical scavenging effect (IC50 = 68.13 ± 1.87 µg/mL) and had a total antioxidant capacity of 279.2 ± 32.08 mg/g GAE. The LD50 of XES was estimated to be > 5000 mg/kg. In sub-acute toxicity, 28 days treatment with XES (250, 500, 1000 mg/kg body weight) did not result in any significant (p > 0.05) change in the body weight or weight of the heart, lung, spleen, liver and kidneys. The haematological and biochemical profiles of XES-treated rats were not significantly (p > 0.05) affected after 4-weeks treatment with XES, except for platelet count which increased significantly (p < 0.0001) in a non-dose-dependent manner. Histopathological examination did not reveal any toxic effect to liver cells, however at 1000 mg/kg XES, slight abnormalities were identified in the glomeruli. Microscopy of the powdered stem bark displayed calcium oxalate crystals, pitted vessels and lignified fibres. Tannins, flavonoids, coumarins, saponins, triterpenes and alkaloids were identified in the bark. This is the first report on the wound healing potential and safety profile of X. evansii, giving scientific credence to its use in traditional medicine.

3.
J Parasitol Res ; 2023: 6707157, 2023.
Article in English | MEDLINE | ID: mdl-37520159

ABSTRACT

This study focused on documenting and evaluating the cercaricidal activity of medicinal plants used for schistosomiasis treatment in an endemic area in Ghana. Through semistructured questionnaires, personal interviews with herbalists in communities surrounding the Barekese dam in the Atwima-Nwabiagya district, where the disease is endemic, were carried out. Thirty medicinal plants distributed in 19 families were reported to be used for schistosomiasis treatment in the survey. Information on the plants, including scientific names, common names, families, and the used plant part were recorded. The families Apocynaceae and Euphorbiaceae recorded the highest number of plants (14% each), followed by Asteraceae (10%), Loranthaceae (7%), and Rubiaceae (7%). In vitro cercaricidal activity of methanol extracts of nine out of the thirty plants was performed by exposing human Schistosoma mansoni cercariae obtained from Biomphalaria pfeifferi to various concentrations of extracts over a duration of 240 minutes. All the plants tested demonstrated time- and concentration-dependent cercaricidal activity. With lethality being set at <1000 µg/mL, the cercaricidal activity in order of decreasing potency was as follows: Withania somnifera (LC50 = 1.29) > Balanites aegyptiaca (LC50 = 7.1) > Xylia evansii (LC50 = 11.14) > Jathropha multifida (LC50 = 12.9) > Justicia flava (LC50 = 22.9) > Anopyxis klaineana (LC50 = 182.81) > Ximenia americana (LC50 = 194.98) > Loranthus lecardii (LC50 = 223.87) > Bridelia tenufolia (LC50 = 309.03) > Zanthoxylium zanthoxyloides (LC50 = 851.94). Phytochemicals, including alkaloids, tannins, triterpenes, saponins, phytosterols, and flavonoids were identified in the plants. The result of this study gives scientific credence to the traditional use of these plants in the treatment of schistosomiasis and proves that the rich botanical knowledge of medicinal plants provides an incredible starting point for the discovery of new anti-schistosomal drugs for the local population.

4.
Article in English | MEDLINE | ID: mdl-38161788

ABSTRACT

Sida cordifolia has been used to treat malaria in Ghana albeit without scientific evidence of antimalarial activity and safety. This work aimed to assess the antimalarial properties and acute toxicity of the aqueous leaf extract of S. cordifolia in murine models. Aqueous extract of the plant was analysed for both suppressive and curative antimalarial properties in chloroquine-sensitive ANKA strains of rodent Plasmodium berghei-infected mice. Acute toxicity evaluation was performed in rats according to the OECD 425 guidelines. The extract displayed antiplasmodial activity in vivo with ED50 of 117.49 ± 15.22 mg/kg and 144.84 ± 18.17 mg/kg in suppressive and curative studies, respectively. The highest % parasitaemia suppression exerted was 76.90 ± 0.64% and 61.50 ± 0.97%, respectively, in the suppressive and curative studies. Survival of infected mice treated with the extract was significantly prolonged. This was dependent on the dose of the extract but imperfectly related to the % parasitaemia suppression. Related antimalarial parameters including percentage hematocrit, changes in body weight, and temperature of experimental mice indicated alleviation of malarial symptoms of treated animals. The extract did not show toxicity in rats. Sida cordifolia L. has antimalarial properties, and was safe. It suppressed parasitaemia in both suppressive and curative studies, was not toxic to animals and prolonged the life of infected animals under treatment. This, therefore, justifies the traditional use of S. cordifolia for the treatment of malaria in Ghana.

5.
Microorganisms ; 12(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38276176

ABSTRACT

This study investigated the antibacterial, resistance modulation, biofilm inhibition, and efflux pump inhibition potentials of Loeseneriella africana stem extract and its constituents. The antimicrobial activity was investigated by the high-throughput spot culture growth inhibition (HT-SPOTi) and broth microdilution assays. The resistance modulation activity was investigated using the anti-biofilm formation and efflux pump inhibition assays. Purification of the extract was carried out by chromatographic methods, and the isolated compounds were characterized based on nuclear magnetic resonance, Fourier transform infrared and mass spectrometry spectral data and comparison with published literature. The whole extract, methanol, ethyl acetate, and pet-ether fractions of L. africana all showed antibacterial activity against the test bacteria with MICs ranging from 62.5 to 500.0 µg/mL The whole extract demonstrated resistance modulation effect through strong biofilm inhibition and efflux pump inhibition activities against S. aureus ATCC 25923, E. coli ATCC 25922 and P. aeruginosa ATCC 27853. Chromatographic fractionation of the ethyl acetate fraction resulted in the isolation of a triterpenoid (4S,4αS,6αR,6ßS,8αS,12αS,12ßR,14αS,14ßR)-4,4α,6ß,8α,11,11,12ß,14α-Octamethyloctadecahydropicene-1,3(2H,4H)-dione) and a phytosterol (ß-sitosterol). These compounds showed antibacterial activity against susceptible bacteria at a MIC range of 31-125 µg/mL and potentiated the antibacterial activity of amoxicillin (at » MIC of compounds) against E. coli and P. aeruginosa with modulation factors of 32 and 10, respectively. These compounds also demonstrated good anti-biofilm formation effect at a concentration range of 3-100 µg/mL, and bacterial efflux pump inhibition activity at ½ MIC and » MIC against E. coli and P. aeruginosa. Loeseneriella africana stem bark extracts and constituents elicit considerable antibacterial, resistance modulation, and biofilm and efflux pump inhibition activities. The results justify the indigenous uses of L. africana for managing microbial infections.

6.
ScientificWorldJournal ; 2021: 5381993, 2021.
Article in English | MEDLINE | ID: mdl-34720766

ABSTRACT

Microbial infections remain a public health problem due to the upsurge of bacterial resistance. In this study, the antibacterial, antibiofilm, and efflux pump inhibitory activities of the stem bark of Acacia macrostachya, an indigenous African medicinal plant, were investigated. In traditional medicine, the plant is used in the treatment of microbial infections and inflammatory conditions. A crude methanol extract obtained by Soxhlet extraction was partitioned by column chromatography to obtain the petroleum ether, ethyl acetate, and methanol fractions. Antibacterial, efflux pump inhibition and antibiofilm formation activities were assessed by the high-throughput spot culture growth inhibition (HT-SPOTi), ethidium bromide accumulation, and the crystal violet retention assay, respectively. The minimum inhibitory concentrations (MICs) of the crude extract and major fractions ranged from 250 to ≥500 µg/mL. At a concentration of 3.9-250 µg/mL, all extracts demonstrated >80% inhibition of biofilm formation in S. aureus. In P. aeruginosa, the EtOAc fraction showed the highest antibiofilm activity (59-69%) while the pet-ether fraction was most active against E. coli biofilms (45-67%). Among the test samples, the crude extract, methanol, and ethyl acetate fractions showed remarkable efflux pump inhibition in S. aureus, E. coli, and P. aeruginosa. At ½ MIC, the methanol fraction demonstrated significant accumulation of EtBr in E. coli having superior efflux inhibition over the standard EPIs: chlorpromazine and verapamil. Tannins, flavonoids, triterpenoids, phytosterols, coumarins, and saponins were identified in preliminary phytochemical studies. Stigmasterol was identified in the EtOAc fraction. This study justifies the use of A. macrostachya in the treatment of infections in traditional medicine and highlights its potential as a source of bioactive compounds that could possibly interact with some resistance mechanisms in bacteria to combat antimicrobial resistance.


Subject(s)
Acacia , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Plant Bark , Plant Extracts/pharmacology , Plant Stems , Anti-Bacterial Agents/isolation & purification , Biofilms/growth & development , Escherichia coli/drug effects , Escherichia coli/physiology , Humans , Membrane Transport Modulators/isolation & purification , Membrane Transport Modulators/pharmacology , Microbial Sensitivity Tests/methods , Plant Extracts/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
7.
Heliyon ; 7(11): e08261, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765780

ABSTRACT

The present study evaluated the wound healing, anthelmintic and antioxidant potentials of crude methanol extracts and fractions (petroleum ether, ethyl acetate and methanol) of the leaves and stem bark of Amphimas pterocarpoides. Wound healing activity was determined by the dermal excision model in rats; anthelmintic activity was evaluated by the adult worm motility test using the adult Indian worm, Pheretima postuma. Total flavonoid, phenolic content and antioxidant activity were assessed by the aluminum chloride colorimetric, Folin Ciocalteu, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and total antioxidant capacity (TAC) assays respectively. HPLC/UV fingerprints were developed for quality control. The maximum amount of phenolics and flavonoids were detected in the methanol fractions of the stem bark (225.0 ± 20.0 mg/g gallic acid equivalent (GAE) and 201.0 ± 1.41 mg/g quercetin equivalent (QCE) respectively) and leaves (84.54 ± 1.36 mg/g GAE and 130.7 ± 1.71 mg/g QCE, respectively). Both leaf and bark displayed remarkable free radical scavenging and TAC with the highest effect given by the methanol fractions. Significant (p < 0.05) wound contraction was achieved by topical application of the leaf (APL) and stem bark (APS) ointments (5-15%) with >90 % wound surface closure for 1% silver sulphadiazine, APS 15% and APL 10% treated groups by day 15. APL and APS demonstrated a concentration- and time-dependent paralysis and mortality of the P. posthuma with APL (6.25 mg/mL) causing worm paralysis at 82.60 min and death at 93 min, better than 10 mg/mL albendazole (paralysis at 76.30 min; death at 117 min). Tannins, triterpenoids, phytosterols, flavonoids, saponins and coumarins were detected in the leaves and bark. The results have proven the potential of A. pterocarpoides as a wound healing and anthelmintic agent, giving scientific credence to its use in traditional medicine.

8.
Adv Pharmacol Pharm Sci ; 2020: 8821905, 2020.
Article in English | MEDLINE | ID: mdl-33163963

ABSTRACT

The majority of indigenes in the rural areas of Ghana use herbal medicines for their primary health care. In this study, an ethnobotanical survey was undertaken to document medicinal plants used by traditional healers in the Ejisu-Juaben district in the Ashanti region of Ghana to treat infections and to further investigate the antibiofilm formation properties of selected plants in resisting pathogenic bacteria. Seventy medicinal plants used by traditional practitioners for the treatment of skin infections and wounds were documented from the ethnobotanical survey. Forty out of the seventy plants were collected and their methanol extracts evaluated for antimicrobial activity by the agar diffusion assay. Extracts that showed antibacterial activity were tested for biofilm inhibitory activity, and the most active plant was subsequently purified to obtain the active constituents. Biofilm formation was significantly mitigated by petroleum ether, ethyl acetate, and methanol extracts of Holarrhena floribunda stem bark. Bioassay-guided fractionation of an alkaloidal extract prepared from the methanol fraction led to the isolation of three steroidal alkaloids, namely, holonamine, holadienine, and conessine. The isolated compounds demonstrated varying degrees of biofilm formation inhibitory properties. The current study reveals that screening of indigenous medicinal plants could unravel potential leads to salvage the declining efficacy of conventional antibiotics. Holarrhena floribunda stem bark extract has strong biofilm formation inhibition properties, which could be attributed to the presence of steroidal alkaloids.

9.
Article in English | MEDLINE | ID: mdl-32382310

ABSTRACT

The emergence and resurgence of P. falciparum resistance to generations of antimalarial drugs have prompted the search for new, effective, and safe antimalarial agents. This study aimed at investigating the in vivo antiplasmodial activity of the 70% hydroethanolic extract and constituents of the stem bark of Myrianthus libericus based on its ethnomedicinal use as an antimalarial agent. The antiplasmodial activity was assessed in Swiss albino mice employing the 4-day suppressive and Rane's tests. MLB significantly (p < 0.0001) suppressed parasitaemia by 52.26%, 65.40%, and 77.11% at 50, 100, and 200 mg·kg-1 doses, respectively, in the 4-day suppressive test. In Rane's test, the highest parasitaemia suppression of 72.50% was recorded at a dose of 200 mg·kg-1 of the extract. Fractionation of the bioactive ethyl acetate fraction by solvent-solvent partitioning and column chromatography led to the isolation of friedelan-3-one and stigmasterol being reported for the first time from this species. The compounds demonstrated remarkable antiplasmodial activity by suppressing parasitaemia by 65-72% in the suppressive test and 61-70% in the curative test at doses of 10-30 mg·kg-1. Both the extract and the isolated compounds significantly prolonged the survival time of infected mice and averted the cardinal signs associated with P. berghei-induced malaria including weight loss, hypothermia, and haemolysis. The results obtained confirm the prospect of M. libericus as an important source of new antimalarial compounds and justifies its folkloric use as an antimalarial agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...