Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(4)2024 04 07.
Article in English | MEDLINE | ID: mdl-38675913

ABSTRACT

Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.


Subject(s)
Cell Surface Display Techniques , Peptides , Peptides/pharmacokinetics , Peptides/chemistry , Animals , Cell Surface Display Techniques/methods , Humans , Tissue Distribution , Nanoparticles/chemistry , Peptide Library
2.
Biomolecules ; 10(5)2020 05 05.
Article in English | MEDLINE | ID: mdl-32380649

ABSTRACT

Pancreatic cancer is characterized by a 5-year survival rate of 3%, in part due to inadequate detection methods. The small size of peptides offers advantages regarding molecular targeting. Thus, peptides may be used in detection of pancreatic cancer. Here, peptides that target pancreatic cancer cells were selected using phage display technology using a 15-mer fUSE5 library. Phage were pre-cleared against immortalized pancreatic cells (hTERT-HPNE), followed by selections against pancreatic cancer (Mia Paca-2) cells. Next-generation sequencing identified two peptides, MCA1 and MCA2, with a Log2 fold change (Mia Paca-2/ hTERT-HPNE) >1.5. Modified ELISA and fluorescent microscopy showed that both peptides bound significantly higher to Mia Paca-2 cells, and not to hTERT-HPNE, embryonic kidney (HEK 293), ovarian (SKOV-3) and prostate cancer (LNCaP) cell lines. Further characterization of MCA1 and MCA2 revealed EC50 values of 16.11 µM (95% CI [9.69, 26.31 µM]) and 97.01 µM (95% CI [58.64, 166.30 µM]), respectively. Based on these results, MCA1 was selected for further studies. A competitive dose response assay demonstrated specific binding and an IC50 value of 2.15 µM (95% CI [1.28, 3.62 µM]). Taken together, this study suggests that MCA1 may be used as a pancreatic cancer targeting ligand for detection of the disease.


Subject(s)
Antineoplastic Agents/metabolism , Pancreatic Neoplasms/metabolism , Peptide Library , Cell Line, Tumor , Cell Surface Display Techniques , Female , HEK293 Cells , Humans , Male , Protein Binding
3.
Diagnostics (Basel) ; 9(4)2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31717613

ABSTRACT

Ovarian cancer is often diagnosed at late stages due to current inadequate detection. Therefore, the development of new detection methods of ovarian cancer is needed. This may be achieved by phage nanoparticles that display targeting peptides for optical imaging. Here, two such phage clones are reported. Ovarian cancer binding and specificity of phage clones (pJ18, pJ24) and peptides (J18, J24) were investigated using fluorescent microscopy and modified ELISA. Further, AF680-labeled phage particles were subjected to biodistribution and optical imaging studies in SKOV-3 xenografted mice. Fluorescent microscopy and ELISA of phage and peptides showed significantly increased binding to SKOV-3 cells compared to controls. Additionally, these studies revealed that J18 exhibits specificity for ovarian cancer SKOV-3 and OVCAR-3 cell lines. Further, peptides displayed increased SKOV-3 binding compared to N35 (non-relevant peptide) with EC50 values of 22.2 ± 10.6 µM and 29.0 ± 6.9 (mean ± SE), respectively. Biodistribution studies of AF680-labeled phage particles showed tumor uptake after 4 h and excretion through the reticuloendothelial system. Importantly, SKOV-3 tumors were easily localized by optical imaging after 2 h and 4 h and displayed good tumor-to-background contrast. The fluorescent tumor signal intensity was significantly higher for pJ18 compared to wild type (WT) after 2 h.

SELECTION OF CITATIONS
SEARCH DETAIL
...