Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Acta Microbiol Immunol Hung ; 71(1): 82-88, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38285119

ABSTRACT

One hundred and eighteen sputum specimens suspected of Mycobacterium abscessus infection were collected. Species level identification of M. abscessus was performed by rpoB sequencing. Clonality analysis was done by multilocus sequence typing (MLST) for M. abscessus. Antibiotic susceptibility testing was performed for clarithromycin, amikacin, ciprofloxacin and moxifloxacin. Altogether 128 isolates were obtained and were subjected to rpoB gene sequencing for definite identification. Among them 59 were identified as M. abscessus, and these included 22 (37.28%) isolates of M. abscessus subsp. abscessus, 22 (37.28%) isolates of M. abscessus subsp. massiliense, and 15 (25.42%) isolates of M. abscessus subsp. bolletii. All 59 M. abscessus complex isolates were analyzed by MLST in this study. Certain sequence types (STs) were identified among the 59 isolates and were specific for each subspecies. Two STs (ST40 and ST33) were specific to M. abscessus subsp. abscessus, one ST (ST20) was specific to M. abscessus subsp. bolletii, and one ST (ST15) was specific to M. abscessus subsp. massiliense. In antibiotic resistance, clarithromycin susceptibility testing of 22 M. abscessus subsp. abscessus strains detected 15 (68.18%) resistant strains, while among 22 M. abscessus subsp. massiliense strains 5 (22.72%) exhibited resistance, and among 15 M. abscessus subsp. bolletii 8 (53.33%) were resistant. Our study revealed a significant level of antibiotic resistance in isolates of the M. abscessus complex.


Subject(s)
Mycobacterium abscessus , Tuberculosis, Pulmonary , Humans , Mycobacterium abscessus/genetics , Clarithromycin/pharmacology , Multilocus Sequence Typing , Iran/epidemiology , Tuberculosis, Pulmonary/epidemiology , Genomics , Drug Resistance, Microbial , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
2.
PLoS One ; 17(11): e0277329, 2022.
Article in English | MEDLINE | ID: mdl-36395161

ABSTRACT

Ventilator-associated pneumonia (VAP) is a prevalent nosocomial illness in mechanically ventilated patients. Hence, the aim of this study was to investigate the pattern of antibiotic resistance and biofilm formation of bacterial profiles from Endotracheal Tubes of patients hospitalized in an intensive care unit in southwest Iran. According to the standard operating method, the microbiological laboratory conducts bacteria culture and susceptibility testing on endotracheal Tube samples suspected of carrying a bacterial infection. The Clinical and laboratory standards institute (CLSI) techniques are used to determine the Antimicrobial resistance (AMR) of bacterial isolates to antibiotics using the disk diffusion method. The crystal violet staining method was used to assess the biofilm-forming potential of isolates in a 96-well microtiter plate. In total, (51%) GPBs were included in this study. The isolated GPB were coagulase-negative Staphylococcus (16%), S. aureus (14%). In total, (40%) of GNB were included in this study. The isolated GNB were Klebsiella spp. (36%), A. baumannii (22%), P. aeruginosa (35%). (32%) bacterial strains were MDR and (29%) strains were XDR. The results of biofilm formation showed (72%) were biofilm producers. VAP is a common and severe nosocomial infection in mechanically ventilated patients. Controlling biofilm formation, whether on the ET or in the oropharyngeal cavity, is thus an important technique for treating VAP. Colistin and linezolid are antibiotics that are effective against practically all resistant GNB and GPB isolates.


Subject(s)
Pneumonia, Ventilator-Associated , Staphylococcus aureus , Humans , Iran , Drug Resistance, Microbial , Intensive Care Units , Pneumonia, Ventilator-Associated/drug therapy , Bacteria , Intubation, Intratracheal/adverse effects , Biofilms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas aeruginosa
3.
J Cardiothorac Surg ; 17(1): 185, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986339

ABSTRACT

Infective endocarditis (IE) is a severe disease that is still associated with high mortality despite recent advances in diagnosis and treatment. HACEK organisms (Haemophilus spp., Aggregatibacter actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella kingae) are gram-negative bacteria that are part of the normal flora of the mouth and upper respiratory tract in humans. These organisms cause a wide range of infections, of which IE is one of the most notable. In order to control and prevent endocarditis caused by HACEK, measures such as oral hygiene and the use of prophylactic drugs should be used for people at risk, including people with underlying heart disease and people with artificial valves. This review is a summary of the main aspects of IE focusing on HACEK organisms.


Subject(s)
Endocarditis, Bacterial , Endocarditis , Heart Diseases , Eikenella corrodens , Endocarditis/diagnosis , Endocarditis/therapy , Endocarditis, Bacterial/microbiology , Haemophilus , Humans
4.
Sci Rep ; 12(1): 2296, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145139

ABSTRACT

This study aimed to assess the presence of qnrA, qnrB, qnrC, qnrD, qnrS, qepA, and aac(6')-Ib-cr determinants as well as quinolone resistance pattern of clinical isolates of P. aeruginosa in Ahvaz, southwest Iran. A total of 185 clinical isolates of P. aeruginosa were collected from 5 university-affiliated hospitals in Ahvaz, southwest Iran. The disk diffusion method was applied to assess the quinolone resistance pattern. The presence of qnrA, qnrB, qnrC, qnrD, qnrS, qepA, and aac(6')-Ib-cr genes was investigated by the polymerase chain reaction (PCR) method. Overall, 120 (64.9%) isolates were non-susceptible to quinolones. The most and the less quinolone resistance rates were observed against ciprofloxacin (59.4%) and ofloxacin (45.9%), respectively. The prevalence rates of qnr genes were as follows: qnrA (25.8%), qnrB (29.2%), and qnrS (20.8%). The qnrB gene was the most common type of qnr genes. The qnr genes were occurred in 37.5% (n = 45/120) of quinolne-resistant isolates, simultaneously. The qnrC, qnrD, qepA, and aac(6')-Ib-cr genes were not recognized in any isolates. In conclusion, the ofloxacin was the most effective quinolone. This study was the first to shed light on the prevalence of PMQR genes among P. aeruginosa isolates in southwest Iran.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genes, Bacterial/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Quinolones/pharmacology , Ciprofloxacin/pharmacology , Humans , Iran , Microbial Sensitivity Tests/methods , Ofloxacin/pharmacology , Pseudomonas aeruginosa/isolation & purification
5.
J Burn Care Res ; 43(2): 423-431, 2022 03 23.
Article in English | MEDLINE | ID: mdl-34236077

ABSTRACT

Burn infection continues to be a major issue of concern globally and causes more harm to developing countries. This study aimed to identify the aerobic bacteriological profiles and antimicrobial resistance patterns of burn infections in three hospitals in Abadan, southwest Iran. The cultures of various clinical samples obtained from 325 burn patients were investigated from January to December 2019. All bacterial isolates were identified based on the standard microbiological procedures. Antibiotic susceptibility tests were performed according to the CLSI. A total of 287 bacterial species were isolated from burn patients. Pseudomonas aeruginosa was the most frequent bacterial isolate in Gram-negative bacteria and S. epidermidis was the most frequent species isolated in Gram-positive bacteria. The maximum resistance was found to ampicillin, gentamicin, ciprofloxacin, while in Gram-negative bacteria, the maximum resistance was found to imipenem, gentamicin, ciprofloxacin, ceftazidime, and amikacin. The occurrence of multidrug resistance phenotype was as follows: P. aeruginosa (30.3%), Enterobacter spp (11.1%), Escherichia coli (10.5%), Citrobacter spp (2.1%), S. epidermidis (2.8%), S. aureus, and S. saprophyticus (0.7%). Owing to the diverse range of bacteria that cause burn wound infection, regular investigation, and diagnosis of common bacteria and their resistance patterns is recommended to determine the proper antibiotic regimen for appropriate therapy.


Subject(s)
Anti-Bacterial Agents , Burns , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Burns/drug therapy , Burns/microbiology , Ciprofloxacin , Drug Resistance, Bacterial , Drug Resistance, Multiple , Gentamicins , Gram-Negative Bacteria , Humans , Iran/epidemiology , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Staphylococcus aureus
6.
PLoS One ; 16(11): e0259512, 2021.
Article in English | MEDLINE | ID: mdl-34752474

ABSTRACT

BACKGROUND: The drug resistance is expected to be the most important challenge in infection control in Iran, where there is no local report or standard drug resistance monitoring system. Therefore, this study aimed to investigate the aerobic and anaerobic bacterial profile of nosocomial infections and their antibiotic resistance in Ahvaz, southwest Iran. METHODOLOGY: The gram-positive and gram-negative bacteria were identified on the basis of conventional culture and biochemical tests. The antibiotic resistance of the bacterial isolates against antibiotics was determined by the disk diffusion method. RESULTS: Among total 1156 collected positive samples, E. coli and coagulase-negative staphylococci (CoNS) were the most frequent pathogenic gram negative bacteria (GNB) and gram positive bacteria (GPB) respectively. Drug susceptibility testing revealed that among GNB, P. aeruginosa was 100% resistant to amikacin, cefepime, ciprofloxacin and tetracycline. In the case of E. coli, the resistance rate was (98%) for trimethoprim sulfamethoxazole and cefepime. For GPB, S. aureus showed the highest resistance rates to amikacin (100%) and clindamycin (100%). In addition, CoNS strains showed a high level of resistance to doxycycline (100%), erythromycin (100%) and cefoxitin (97%). In Bacteroeides fragilis isolates, the highest resistance rate belonged to clindamycin (72%), and Clostridium perfringens strains showed high level of resistance to penicillin (46%). CONCLUSION: The results highlighted that there are distinct factors leading to antimicrobial resistance in Ahvaz, southwest Iran. The primary contributors to the resistance development, include poor surveillance of drug-resistant infections, poor quality of available antibiotics, clinical misuse, and the ease of access to antibiotics. Moreover, similar factors such as self-medication and the lack of regulation on medication imports play a role in antibiotic resistance in the region.


Subject(s)
Cross Infection , Escherichia coli , Staphylococcus aureus , Cross-Sectional Studies
7.
Neurochem Res ; 46(12): 3085-3102, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34365594

ABSTRACT

Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia-reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.


Subject(s)
Nervous System/physiopathology , Neuroprotective Agents/pharmacology , Reperfusion Injury/drug therapy , Resveratrol/pharmacology , Animals , Antioxidants/pharmacology , Humans , Reperfusion Injury/pathology
8.
Infect Drug Resist ; 12: 1771-1782, 2019.
Article in English | MEDLINE | ID: mdl-31303772

ABSTRACT

Background: Staphylococcus epidermidis has emerged as the pathogen from neonatal septicemia. Antibiotic resistance and the capability of biofilm formation make these infections much harder to treat. Hence, the aim of this study was to investigate the association between biofilm formation, structure and antibiotic resistance in S. epidermidis isolated from neonatal septicemia. Methods: Overall, 65 S. epidermidis isolates were recovered from blood cultures of neonatal septicemia. Antibiotic resistance pattern and the biofilm production were determined using phenotypic methods. The presence of ica operon, the bhp, the aap genes and SCCmec types were screened using PCR. Results: Most S.epidermidis isolates were resistant to erythromycin, while all isolates were sensitive to linezolid and vancomycin. Fifty-three percent of S.epidermidis isolates were resistant to methicillin. SCCmec types II was found commonly among methicillin-resistant S. epidermidis (MRSE) strains. The biofilm formation was observed in 65% of S.epidermidis isolates and the majority have polysaccharide matrix. icaA and icaD genes were found in 40% and 19% of isolates. Twenty-three isolates (62%) produced dissolvable polysaccharide intercellular adhesion (PIA)-dependent biofilms in SM after growth in TSB with NaCl and 14 (37%) isolates produced dissolvable protein-dependent biofilms in PK after growth in TSB with glucose. Three isolates (62%) produced dissolvable polysaccharide intercellular adhesion. Conclusion: Our data indicate the high rates of antibiotic resistance and the capability of biofilm formation among S. epidermidis isolates. Hence, the transmission of these strains can cause an increased risk of serious nosocomial infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...