Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomed Mater Res A ; 111(6): 851-862, 2023 06.
Article in English | MEDLINE | ID: mdl-36951312

ABSTRACT

The use of polymeric biomaterials to create tissue scaffolds using additive manufacturing techniques is a well-established practice, owing to the incredible rapidity and complexity in design that modern 3D printing methods can provide. One frontier approach is melt electrowriting (MEW), a technique that takes advantage of electrohydrodynamic phenomena to produce fibers on the scale of 10's of microns with designs capable of high resolution and accuracy. Poly(ε-caprolactone) (PCL) is a material that is commonly used in MEW due to its favorable thermal properties, high stability, and biocompatibility. However, one of the drawbacks of this material is that it lacks the necessary chemical groups which allow covalent crosslinking of additional elements onto its structure. Attempts to functionalise PCL structures therefore often rely on the functional units to be applied externally via coatings or integrally mixed elements. Both can be extremely useful depending on their applications, but can add extra difficulties into the use of the resulting structures. Coatings require careful design and application to prevent rapid degradation, while elements mixed into the polymer melt must deal with the possibilities of phase separation and changes to MEW properties of the unadulterated polymer. With this in mind, this study sought to imbibe functionality to MEW-printed scaffolds using the approach of adding functional units directly, via covalent bonding of functional groups to the polymer itself. To this end, this study employs a recently developed class of polymers called acrylate-endcapped urethane-based polymers (AUPs). The polymer backbone of the specific AUP used consists of a poly(D,L-lactic acid) (PDLLA)/PCL copolymer chain, which is functionalized with 6 acrylate groups, 3 at either end. Through blending of the AUP with PCL, various concentrations of this mixture were used with MEW to produce scaffolds that possessed acrylate groups on their surface. Using UV crosslinking, these groups were tagged with Fluorescein-o-Acrylate to verify that PDLLA/PCL AUP/PCL blends facilitate the direct covalent bonding of external agents directly onto the MEW material. Blending of the AUP with PCL increases the scaffold's stiffness and ultimate strength. Finally, blends were proven to be highly biocompatible, with cells attaching and proliferating readily at day 3 and 7 post seeding. Through this work, PDLLA/PCL AUP/PCL blends clearly demonstrated as a biocompatible material that can be processed using MEW to create functionalised tissue scaffolds.


Subject(s)
Biocompatible Materials , Polyesters , Biocompatible Materials/chemistry , Polyesters/chemistry , Tissue Scaffolds/chemistry , Polymers/chemistry , Lactic Acid/chemistry , Tissue Engineering/methods
2.
NPJ 2D Mater Appl ; 7(1): 44, 2023.
Article in English | MEDLINE | ID: mdl-38665478

ABSTRACT

Electroconductive biomaterials are gaining significant consideration for regeneration in tissues where electrical functionality is of crucial importance, such as myocardium, neural, musculoskeletal, and bone tissue. In this work, conductive biohybrid platforms were engineered by blending collagen type I and 2D MXene (Ti3C2Tx) and afterwards covalently crosslinking; to harness the biofunctionality of the protein component and the increased stiffness and enhanced electrical conductivity (matching and even surpassing native tissues) that two-dimensional titanium carbide provides. These MXene platforms were highly biocompatible and resulted in increased proliferation and cell spreading when seeded with fibroblasts. Conversely, they limited bacterial attachment (Staphylococcus aureus) and proliferation. When neonatal rat cardiomyocytes (nrCMs) were cultured on the substrates increased spreading and viability up to day 7 were studied when compared to control collagen substrates. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were seeded and stimulated using electric-field generation in a custom-made bioreactor. The combination of an electroconductive substrate with an external electrical field enhanced cell growth, and significantly increased cx43 expression. This in vitro study convincingly demonstrates the potential of this engineered conductive biohybrid platform for cardiac tissue regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL