Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Front Nutr ; 10: 1201007, 2023.
Article in English | MEDLINE | ID: mdl-37680900

ABSTRACT

Introduction: Excessive alcohol consumption leads to a myriad of detrimental health effects, including alcohol-associated liver disease (ALD). Unfortunately, no available treatments exist to combat the progression of ALD beyond corticosteroid administration and/or liver transplants. Dihydromyricetin (DHM) is a bioactive polyphenol and flavonoid that has traditionally been used in Chinese herbal medicine for its robust antioxidant and anti-inflammatory properties. It is derived from many plants, including Hovenia dulcis and is found as the active ingredient in a variety of popular hangover remedies. Investigations utilizing DHM have demonstrated its ability to alleviate ethanol-induced disruptions in mitochondrial and lipid metabolism, while demonstrating hepatoprotective activity. Methods: Female c57BL/6J mice (n = 12/group) were treated using the Lieber DeCarli forced-drinking and ethanol (EtOH) containing liquid diet, for 5 weeks. Mice were randomly divided into three groups: (1) No-EtOH, (2) EtOH [5% (v/v)], and (3) EtOH [5% (v/v)] + DHM (6 mg/mL). Mice were exposed to ethanol for 2 weeks to ensure the development of ALD pathology prior to receiving dihydromyricetin supplementation. Statistical analysis included one-way ANOVA along with Bonferroni multiple comparison tests, where p ≤ 0.05 was considered statistically significant. Results: Dihydromyricetin administration significantly improved aminotransferase levels (AST/ALT) and reduced levels of circulating lipids including LDL/VLDL, total cholesterol (free cholesterol), and triglycerides. DHM demonstrated enhanced lipid clearance by way of increased lipophagy activity, shown as the increased interaction and colocalization of p62/SQSTM-1, LC3B, and PLIN-1 proteins. DHM-fed mice had increased hepatocyte-to-hepatocyte lipid droplet (LD) heterogeneity, suggesting increased neutralization and sequestration of free lipids into LDs. DHM administration significantly reduced prominent pro-inflammatory cytokines commonly associated with ALD pathology such as TNF-α, IL-6, and IL-17. Discussion: Dihydromyricetin is commercially available as a dietary supplement. The results of this proof-of-concept study demonstrate its potential utility and functionality as a cost-effective and safe candidate to combat inflammation and the progression of ALD pathology.

2.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36555338

ABSTRACT

Growing evidence supports the pivotal role of the bidirectional interplay between the gut microbiota and the central nervous system during the progression of alcohol use disorder (AUD). In our previous study, supplementation with sodium butyrate (SB) in C57BL/6J mice prevented increased ethanol consumption in a binge-like drinking paradigm (DID) as a result of treatment with a non-absorbable antibiotic cocktail (ABX). In this study, we tested the hypothesis that SB protection against enhanced ABX-induced ethanol consumption in mice is partially due to modulation of neuroinflammatory responses. Pro- and anti-inflammatory cytokines, as well as changes in microglia and astrocytes were analyzed in hippocampus tissues from ABX-, SB-, ABX+SB-treated mice subjected to 4-week DID. We found that ethanol without or with ABX treatment increased mRNA levels of key brain cytokines (MCP-1, TNF-α, IL-1ß, IL-6 and IL-10) while SB supplementation prevented these changes. Additionally, SB supplementation prevented changes in microglia, i.e., increase in Iba-1 positive cell number and morphology, and in astrocytes, i.e., decrease in GFAP-positive cell number, induced by combination of ethanol and ABX treatments. Our results suggest that gut microbiota metabolites can influence drinking behavior by modulation of neuroinflammation, highlighting the potential for microbiome-targeting strategies for treatment or prevention of AUD.


Subject(s)
Alcoholism , Cytokines , Animals , Mice , Butyric Acid/pharmacology , Mice, Inbred C57BL , Cytokines/metabolism , Ethanol/adverse effects , Alcohol Drinking , Inflammation/drug therapy , Alcoholism/drug therapy , Disease Models, Animal , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dietary Supplements
3.
Int J Mol Sci ; 21(19)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003406

ABSTRACT

Purinergic P2X receptors (P2X) are ATP-gated ion channels widely expressed in the CNS. While the direct contribution of P2X to synaptic transmission is uncertain, P2X reportedly affect N-methyl-D-aspartate receptor (NMDAR) activity, which has given rise to competing theories on the role of P2X in the modulation of synapses. However, P2X have also been shown to participate in receptor cross-talk: an interaction where one receptor (e.g., P2X2) directly influences the activity of another (e.g., nicotinic, 5-HT3 or GABA receptors). In this study, we tested for interactions between P2X2 or P2X4 and NMDARs. Using two-electrode voltage-clamp electrophysiology experiments in Xenopus laevis oocytes, we demonstrate that both P2X2 and P2X4 interact with NMDARs in an inhibited manner. When investigating the molecular domains responsible for this phenomenon, we found that the P2X2 c-terminus (CT) could interfere with both P2X2 and P2X4 interactions with NMDARs. We also report that 11 distal CT residues on the P2X4 facilitate the P2X4-NMDAR interaction, and that a peptide consisting of these P2X4 CT residues (11C) can disrupt the interaction between NMDARs and P2X2 or P2X4. Collectively, these results provide new evidence for the modulatory nature of P2X2 and P2X4, suggesting they might play a more nuanced role in the CNS.


Subject(s)
Receptors, N-Methyl-D-Aspartate/genetics , Receptors, Purinergic P2X/genetics , Synapses/genetics , Adenosine Triphosphate/metabolism , Animals , Neurons/metabolism , Oocytes/metabolism , Patch-Clamp Techniques , Receptor Cross-Talk/physiology , Receptors, GABA/genetics , Receptors, Purinergic P2X4/genetics , Synaptic Transmission/genetics , Xenopus laevis/genetics , Xenopus laevis/physiology
4.
Brain Res ; 1747: 147067, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32827548

ABSTRACT

Research focusing on the gut-brain axis is growing, but the interplay of ethanol (alcohol molecule), the gut microbiome, the brain and behavior is poorly understood. In the current study, we remodeled the gut microbiota by providing adult male C57BL/6J mice with a non-absorbable antibiotic cocktail (ABX) in the drinking water and tested ethanol consumption behavior in a binge-like "Drinking in the Dark" model. Notably, 2 weeks of ABX pre-treatment significantly increased ethanol consumption during the 6 weeks of ethanol exposure in the DID paradigm. ABX treatment also appeared to prevent anxiety-like behavior during ethanol withdrawal period. ABX-treated mice expressed reduced bacterial diversity and modified microbiota compositions within cecal samples. There were drastically reduced levels of commensal Firmicutes and increases in the Bacteroidetes and Verrucomicrobia populations. Importantly, the relative abundance of Firmicutes inversely correlated to ethanol intake levels regardless of antibiotic treatment, whereas Bacteroidetes and Verrucomicrobia populations negatively correlated to ethanol intake levels. This is the first report demonstrating that ABX-induced disruption of the gut commensal microbiota leads to increased ethanol consumption in mice. This work reveals an important relationship between the gut microbiota and ethanol consumption behavior and supports the use of microbial-targeted approaches to study gut-brain interactions during alcohol use disorder.


Subject(s)
Alcohol Drinking , Anti-Bacterial Agents/pharmacology , Metagenome/drug effects , Microbiota/drug effects , Animals , Ethanol/blood , Male , Mice
5.
Int J Mol Sci ; 21(7)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252459

ABSTRACT

Mouse models of alcohol use disorder (AUD) revealed purinergic P2X4 receptors (P2X4Rs) as a promising target for AUD drug development. We have previously demonstrated that residues at the transmembrane (TM)-ectodomain interface and within the TM1 segment contribute to the formation of an ethanol action pocket in P2X4Rs. In the present study, we tested the hypothesis that there are more residues in TM1 and TM2 segments that are important for the ethanol sensitivity of P2X4Rs. Using site-directed mutagenesis and two electrode voltage-clamp electrophysiology in Xenopus oocytes, we found that arginine at position 33 (R33) in the TM1 segment plays a role in the ethanol sensitivity of P2X4Rs. Molecular models in both closed and open states provided evidence for interactions between R33 and aspartic acid at position 354 (D354) of the neighboring TM2 segment. The loss of ethanol sensitivity in mixtures of wild-type (WT) and reciprocal single mutants, R33D:WT and D354R:WT, versus the WT-like response in R33D-D354R:WT double mutant provided further support for this interaction. Additional findings indicated that valine at TM1 position 49 plays a role in P2X4R function by providing flexibility/stability during channel opening. Collectively, these findings identified new activity sites and suggest the importance of TM1-TM2 interaction for the function and ethanol sensitivity of P2X4Rs.


Subject(s)
Amino Acids/chemistry , Ethanol/metabolism , Receptors, Purinergic P2X4/chemistry , Receptors, Purinergic P2X4/metabolism , Alanine/chemistry , Alcoholism/etiology , Alcoholism/metabolism , Arginine/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Protein Domains , Purinergic P2X Receptor Agonists , Receptors, Purinergic P2X4/genetics , Structure-Activity Relationship
6.
Alcohol ; 86: 1-8, 2020 08.
Article in English | MEDLINE | ID: mdl-32278067

ABSTRACT

Alcohol use disorder (AUD) has a major national impact, affecting over 18 million people, causing approximately 88,000 deaths, and costing upward of $250 billion annually in the United States. Unfortunately, FDA-approved AUD pharmaceuticals are few, and clinical benefits are mostly ineffective in patients suffering from AUD. Therefore, the identification of novel targets and/or innovative methods for the development of safe and effective medications represents a critical public health need. Previously, we reported that avermectin compounds (ivermectin [IVM] and moxidectin [MOX]) significantly reduced ethanol intake in male and female mice. However, avermectin compounds are readily effluxed by P-glycoprotein (Pgp/ABCB1) in the blood-brain barrier (BBB), resulting in reduced retention time by the drugs in the central nervous system (CNS). As such, the doses of IVM or MOX and the time frame for significant reductions of ethanol intake are not ideal. Here we evaluate a novel combinatorial strategy involving IVM and tariquidar (TQ), a third-generation efflux inhibitor of Pgp, to reduce the dosing necessary for improving alcohol (ethanol) consumption behavior. We tested male C57BL/6J mice using a two-bottle choice study to evaluate ethanol consumption and preference. We found that injecting 10 mg/kg of TQ 30 min prior to IVM resulted in a five-fold improvement in the efficacy of IVM (dosed at 0.5 mg/kg), resulting in a significant reduction in ethanol intake and preference. Notably, the reduction by IVM was well tolerated, and no adverse effects were identified when tested at doses ranging from 0.50 mg/kg to 2.0 mg/kg. Collectively, our findings indicate that IVM, in combination with TQ, increases its efficacy in the CNS for reducing ethanol consumption. This work demonstrates a novel combinatorial drug strategy that allows new opportunities for drugs with poor CNS retention, such as IVM, to demonstrate improved potency and potentially improved safety.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/therapeutic use , Alcohol Drinking/drug therapy , Alcoholism/drug therapy , Ivermectin/therapeutic use , Animals , Ethanol/administration & dosage , Male , Mice , Mice, Inbred C57BL
7.
Front Cell Neurosci ; 13: 331, 2019.
Article in English | MEDLINE | ID: mdl-31396053

ABSTRACT

Sensorimotor gating refers to the ability to filter incoming sensory information in a stimulus-laden environment and disruption of this physiological process has been documented in psychiatric disorders characterized by cognitive aberrations. The effectiveness of current pharmacotherapies for treatment of sensorimotor gating deficits in the patient population still remains controversial. These challenges emphasize the need to better understand the biological underpinnings of sensorimotor gating which could lead to discovery of novel drug targets for therapeutic intervention. Notably, we recently reported a role for purinergic P2X4 receptors (P2X4Rs) in regulation of sensorimotor gating using prepulse inhibition (PPI) of acoustic startle reflex. P2X4Rs are ion channels gated by adenosine-5'-triphosphate (ATP). Ivermectin (IVM) induced PPI deficits in C57BL/6J mice in a P2X4R-specific manner. Furthermore, mice deficient in P2X4Rs [P2X4R knockout (KO)] exhibited PPI deficits that were alleviated by dopamine (DA) receptor antagonists demonstrating an interaction between P2X4Rs and DA receptors in PPI regulation. On the basis of these findings, we hypothesized that increased DA neurotransmission underlies IVM-mediated PPI deficits. To test this hypothesis, we measured the effects of D1 and D2 receptor antagonists, SCH 23390 and raclopride respectively and D1 agonist, SKF 82958 on IVM-mediated PPI deficits. To gain mechanistic insights, we investigated the interaction between IVM and dopaminergic drugs on signaling molecules linked to PPI regulation in the ventral striatum. SCH 23390 significantly attenuated the PPI disruptive effects of IVM to a much greater degree than that of raclopride. SKF 82958 failed to potentiate IVM-mediated PPI disruption. At the molecular level, modulation of D1 receptors altered IVM's effects on dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa (DARPP-32) phosphorylation. Additionally, IVM interacted with the DA receptors antagonists and SKF 82958 in phosphorylation of Ca2+/calmodulin kinase IIα (CaMKIIα) and its downstream target, neuronal nitric oxide synthase (nNOS). Current findings suggest an involvement for D1 and D2 receptors in IVM-mediated PPI disruption via modulation of DARPP-32, CaMKIIα and nNOS. Taken together, the findings suggest that stimulation of P2X4Rs can lead to DA hyperactivity and disruption of information processing, implicating P2X4Rs as a novel drug target for treatment of psychiatric disorders characterized by sensorimotor gating deficits.

8.
J Vis Exp ; (143)2019 01 07.
Article in English | MEDLINE | ID: mdl-30663649

ABSTRACT

Alcohol Use Disorder (AUD) is a major problem with more than an estimated 76 million people worldwide meeting the diagnostic criteria. Current treatments are limited to three FDA-approved medications that are largely ineffective even when combined with psychosocial intervention, as is evident by the high relapse rate. As such, the search for more novel treatments represents an important public health goal. To this end, the following protocol utilizes two simple rodent drinking models to assess the preclinical efficacy of lead anti-alcohol compounds: two-bottle choice (TBC) and drinking in the dark (DID). The former allows mice to voluntary drink in moderation while the latter induces mice to voluntary consume a large amount of alcohol in a short period that mimics binge drinking. The simple and high throughput nature of both of these paradigms allow for rapid screening of pharmacological agents or for identifying strains of mice that exhibit certain voluntary drinking behavior.


Subject(s)
Alcohol Drinking/drug therapy , Alcoholism/drug therapy , Animals , Disease Models, Animal , Humans , Male , Mice
9.
J Neuroimmune Pharmacol ; 14(2): 263-277, 2019 06.
Article in English | MEDLINE | ID: mdl-30353422

ABSTRACT

Chronic low-grade neuroinflammation is increasingly implicated in organ damage caused by alcohol abuse. Purinergic P2X7 receptors (P2X7Rs) play an important role in the generation of inflammatory responses during a number of CNS pathologies as evidenced from studies using pharmacological inhibition approach. P2X7Rs antagonism has not been tested during chronic alcohol abuse. In the present study, we tested the potential of P2X7R antagonist A804598 to reduce/abolish alcohol-induced neuroinflammation using chronic intragastric ethanol infusion and high-fat diet (Hybrid) in C57BL/6J mice. We have previously demonstrated an increase in neuroinflammatory response in 8 weeks of Hybrid paradigm. In the present study, we found neuroinflammatory response to 4 weeks of Hybrid exposure. A804598 treatment reversed the changes in microglia and astrocytes, reduced/abolished increases in mRNA levels of number of inflammatory markers, including IL-1ß, iNOS, CXCR2, and components of inflammatory signaling pathways, such as TLR2, CASP1, NF-kB1 and CREB1, as well in the protein levels of pro-IL-1ß and Nf-kB1. The P2X7R antagonist did not affect the increase in mRNA levels of fraktalkine (CX3CL1) and its receptor CX3CR1, an interaction that plays a neuroprotective role in neuron-glia communication. P2X7R antagonism also resulted in reduction of the inflammatory markers but did not alter steatosis in the liver. Taken together, these findings demonstrate how P2X7R antagonism suppresses inflammatory response in brain and liver but does not alter the neuroprotective response caused by Hybrid exposure. Overall, these findings support an important role of P2X7Rs in inflammation in brain and liver caused by combined chronic alcohol and high-fat diet. Graphical Abstract ᅟ.


Subject(s)
Chemical and Drug Induced Liver Injury/psychology , Encephalitis/chemically induced , Encephalitis/prevention & control , Guanidines/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Quinolines/pharmacology , Receptors, Purinergic P2X7/drug effects , Animals , Astrocytes/drug effects , Astrocytes/pathology , Central Nervous System Depressants/blood , Chemical and Drug Induced Liver Injury/pathology , Cytokines/metabolism , Diet, High-Fat , Encephalitis/pathology , Ethanol/blood , Gene Expression Regulation/drug effects , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/pathology
10.
Med Sci (Basel) ; 6(4)2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30477187

ABSTRACT

Phospholipids (PLs), key elements of cellular membranes, are regulated reciprocally with membrane proteins and can act as sensors for alterations in physiological or pathological states of cells including initiation and development of cancer. On the other hand, peripheral blood mononuclear cells (MNCs) play an important role in antitumor immune response by reacting to cancerous modifications in distant organs. In the current study, we tested the hypothesis that tumor initiation and development are reflected in the alteration pattern of the MNC PL component. We analyzed MNC membrane PL fractions in samples from healthy individuals and from patients with diverse types of cancers to reveal possible alterations induced by malignancy. Compared to healthy controls, the cancer samples demonstrated shifts in several membrane PL profiles. In particular, when analyzing cancer data pooled together, there were significantly higher levels in lysophosphatidylcholine, phosphatidylcholine, and phosphatidylethanolamine fractions, and significantly lower quantities in phosphatidylinositol, phosphatidylserine, and phosphatidic acid fractions in cancer samples compared to controls. The levels of sphingomyelins and diphosphatidylglycerols were relatively unaffected. Most of the differences in PLs were sustained during the analysis of individual cancers such as breast cancer and chronic lymphocytic leukemia. Our findings suggest the presence of a common pattern of changes in MNC PLs during malignancy.

11.
Psychopharmacology (Berl) ; 235(6): 1697-1709, 2018 06.
Article in English | MEDLINE | ID: mdl-29500584

ABSTRACT

The deleterious effects of alcohol use disorders (AUDs) on human health have been documented worldwide. The enormous socioeconomic burden coupled with lack of efficacious pharmacotherapies underlies the need for improved treatment strategies. At present, there is a growing body of preclinical evidence that demonstrates the potential of avermectins [ivermectin (IVM), selamectin (SEL), abamectin (ABM), and moxidectin (MOX)] in treatment of AUDs. Avermectins are derived by fermentation of soil micro-organism, Streptomyces avermitilis, and have been extensively used for treatment of parasitic infections. From the mechanistic standpoint, avermectins are positive modulators of purinergic P2X4 receptors (P2X4Rs). P2X4Rs belong to P2X superfamily of cation-permeable ion channels gated by adenosine 5'-triphosphate (ATP). Building evidence has implicated a role for P2X4Rs in regulation of ethanol intake and that ethanol can inhibit ATP-gated currents in P2X4Rs. Investigations using recombinant cell models and animal models of alcohol drinking have reported that IVM, ABM, and MOX, but not SEL, were able to antagonize the inhibitory effects of ethanol on P2X4Rs in vitro and reduce ethanol intake in vivo. Furthermore, IVM was shown to reduce ethanol consumption via P2X4R potentiation in vivo, supporting the involvement of P2X4Rs in IVM's anti-alcohol effects and that P2X4Rs can be used as a platform for developing novel anti-alcohol compounds. Taken together, these findings support the utility of avermectins as a novel class of drug candidates for treatment of AUDs.


Subject(s)
Alcoholism/drug therapy , Drug Discovery/methods , Ivermectin/analogs & derivatives , Alcoholism/metabolism , Animals , Drug Evaluation, Preclinical/methods , Ethanol/administration & dosage , Humans , Ivermectin/metabolism , Ivermectin/therapeutic use , Receptors, Purinergic P2X4/metabolism
12.
Alcohol ; 68: 63-70, 2018 05.
Article in English | MEDLINE | ID: mdl-29477921

ABSTRACT

Purinergic P2X4 receptors (P2X4Rs) belong to the P2X superfamily of ionotropic receptors that are gated by adenosine 5'-triphosphate (ATP). Accumulating evidence indicates that P2X4Rs play an important role in regulation of ethanol intake. At the molecular level, ethanol's inhibitory effects on P2X4Rs are antagonized by ivermectin (IVM), in part, via action on P2X4Rs. Behaviorally, male mice deficient in the p2rx4 gene (P2X4R knockout [KO]) have been shown to exhibit a transient increase in ethanol intake over a period of 4 days, as demonstrated by social and binge drinking paradigms. Furthermore, IVM reduced ethanol consumption in male and female rodents, whereas male P2X4R KO mice were less sensitive to the anti-alcohol effects of IVM, compared to wildtype (WT) mice, further supporting a role for P2X4Rs as targets of IVM's action. The current investigation extends testing the hypothesis that P2X4Rs play a role in regulation of ethanol intake. First, we tested the response of P2X4R KO mice to ethanol for a period of 5 weeks. Second, to gain insights into the changes in ethanol intake, we employed a lentivirus-shRNA (LV-shRNA) methodology to selectively knockdown P2X4R expression in the nucleus accumbens (NAc) core in male C57BL/6J mice. In agreement with our previous study, male P2X4R KO mice exhibited higher ethanol intake than WT mice. Additionally, reduced expression of P2X4Rs in the NAc core significantly increased ethanol intake and preference. Collectively, the findings support the hypothesis that P2X4Rs play a role in regulation of ethanol intake and that P2X4Rs represent a novel drug target for treatment of alcohol use disorder.


Subject(s)
Alcohol Drinking/genetics , Receptors, Purinergic P2X4/genetics , Alcohol Drinking/psychology , Alcoholism/genetics , Alcoholism/psychology , Animals , Binge Drinking/genetics , Binge Drinking/psychology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microinjections , Nucleus Accumbens/metabolism , RNA, Small Interfering/genetics , Receptors, Purinergic P2X4/biosynthesis
13.
Neuropharmacology ; 128: 11-21, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28943285

ABSTRACT

Neuroinflammation is one of the mechanisms leading to neurodegenerative brain damage induced by chronic alcohol (ethanol) exposure. Microglia play a major role in the development of innate immune responses to environmental injuries including ethanol. Adenosine 5″-triphosphate (ATP)-activated purinergic P2X receptor (P2XR) subtypes, P2X4Rs and P2X7Rs, are endogenously expressed in microglia and can modulate their activity. These 2 P2XR subtypes differ pharmacologically and functionally: 1) P2X4Rs are activated at lower (≤0.1 mM) whereas P2X7Rs - at higher (≥1.0 mM) ATP concentrations; 2) P2X4R activation contributes to the release of brain derived neurotrophic factor and its role in tactile allodynia and neuropathic pain is demonstrated; 3) Due to its role in the secretion of pro-inflammatory IL-1ß, P2X7Rs have been implicated in the development of neurodegenerative pathologies, pain and morphine tolerance. To date, the roles of individual P2XR subtypes in ethanol effects on microglia and the functional consequences are not completely understood. Based on the existing knowledge on the pharmacological and functional differences between P2X4Rs and P2X7Rs, the present work tested the hypothesis that P2X4Rs and P2X7Rs play differential roles in ethanol action in microglia. Effects of ethanol on P2X4R and P2X7R activity, expression and functional consequences were determined using murine BV2 microglial cells. Ethanol (≥100 mM) inhibited P2X4Rs but was inactive on P2X7 channel activity. Ethanol (25, 100 mM) inhibited P2X4R-mediated microglia migration whereas it potentiated pore formation in P2X7Rs. Furthermore, ethanol (25, 100 mM) potentiated P2X7R-mediated IL-1ß secretion from BV2 microglia. Ethanol also induced protein expression for both P2XR subtypes. Overall, the findings identify differential roles for P2X4Rs and P2X7Rs in regards to ethanol effects on microglia which may be linked to different stages of ethanol exposure.


Subject(s)
Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Microglia/drug effects , Receptors, Purinergic P2X4/metabolism , Receptors, Purinergic P2X7/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Cell Line, Transformed , Cell Movement/drug effects , Dose-Response Relationship, Drug , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Membrane Potentials/drug effects , Mice , Patch-Clamp Techniques , Platelet Aggregation Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/metabolism
14.
Neuropharmacology ; 113(Pt A): 60-70, 2017 02.
Article in English | MEDLINE | ID: mdl-27641072

ABSTRACT

Current pharmacotherapies for alcohol used disorder (AUD) are few and relatively ineffective illustrating the need for the development of new, effective medications. Using a translational approach, our laboratory reported that ivermectin, an FDA-approved, human and animal anti-parasitic agent, can significantly reduce ethanol intake in male and female mice across different drinking paradigms. Extending this line of investigation, the current paper investigated the utility of moxidectin (MOX), an analogue of ivermectin, to reduce ethanol intake. Notably, MOX is widely held to have lower neurotoxicity potential and improved margin of safety compared to ivermectin. Using a 24-h-two-bottle choice paradigm, MOX significantly reduced ethanol intake in a dose dependent manner in both male and female C57BL/6J mice, respectively (1.25-7.5 mg/kg) and (1.25-10 mg/kg). Further, multi-day administration of MOX (2.5 mg/kg; intraperitoneal injection) for 5 consecutive days significantly reduced ethanol intake in both the 24-h-two-bottle choice and Drinking-in-the-Dark paradigms in female mice. No overt signs of behavioral toxicity were observed. Notably in both male and female mice, MOX significantly reduced ethanol intake starting approximately 4 h post-injection. Using a Xenopus oocyte expression system, we found that MOX significantly potentiated P2X4 receptor (P2X4R) function and antagonized the inhibitory effects of ethanol on ATP-gated currents in P2X4Rs. This latter finding represents the first report of MOX having activity on P2X4Rs. In addition, MOX potentiated GABAA receptors, but to a lesser degree as compared to ivermectin supporting the hypothesis that MOX would be advantageous (compared to ivermectin) with respect to reducing contraindications. Overall, the results illustrate the potential for development of MOX as a novel pharmacotherapy for the treatment of AUD.


Subject(s)
Alcohol-Related Disorders/drug therapy , Anthelmintics/administration & dosage , Choice Behavior/drug effects , Ethanol/administration & dosage , Macrolides/administration & dosage , Alcohol Drinking/drug therapy , Alcohol-Related Disorders/physiopathology , Animals , Anthelmintics/therapeutic use , Female , Macrolides/therapeutic use , Male , Mice , Mice, Inbred C57BL , Receptors, GABA-A/physiology , Receptors, Purinergic P2X4/physiology , Xenopus laevis
15.
J Neurochem ; 139(1): 134-48, 2016 10.
Article in English | MEDLINE | ID: mdl-27402173

ABSTRACT

Purinergic P2X4 receptors (P2X4Rs) belong to the P2X superfamily of ion channels regulated by ATP. We recently demonstrated that P2X4R knockout (KO) mice exhibited deficits in sensorimotor gating, social interaction, and ethanol drinking behavior. Dopamine (DA) dysfunction may underlie these behavioral changes, but there is no direct evidence for P2X4Rs' role in DA neurotransmission. To test this hypothesis, we measured markers of DA function and dependent behaviors in P2X4R KO mice. P2X4R KO mice exhibited altered density of pre-synaptic markers including tyrosine hydroxylase, dopamine transporter; post-synaptic markers including dopamine receptors and phosphorylation of downstream targets including dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa and cyclic-AMP-response element binding protein in different parts of the striatum. Ivermectin, an allosteric modulator of P2X4Rs, significantly affected dopamine and cyclic AMP regulated phosphoprotein of 32 kDa and extracellular regulated kinase1/2 phosphorylation in the striatum. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Using the 6-hydroxydopamine model of DA depletion, P2X4R KO mice exhibited an attenuated levodopa (L-DOPA)-induced motor behavior, whereas ivermectin enhanced this behavior. Collectively, these findings identified an important role for P2X4Rs in maintaining DA homeostasis and illustrate how this association is important for CNS functions including motor control and sensorimotor gating. We propose that P2X4 receptors (P2X4Rs) regulate dopamine (DA) homeostasis and associated behaviors. Pre-synaptic and post-synaptic DA markers were significantly altered in the dorsal and ventral striatum of P2X4R KO mice, implicating altered DA neurotransmission. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Ivermectin (IVM), a positive modulator of P2X4Rs, enhanced levodopa (L-DOPA)-induced motor behavior. These studies highlight potential interactions between P2X4Rs and DA system.


Subject(s)
Behavior, Animal , Corpus Striatum/metabolism , Dopamine/metabolism , Receptors, Purinergic P2X4/drug effects , Receptors, Purinergic P2X4/physiology , Alcohol Drinking/genetics , Alcohol Drinking/psychology , Animals , Corpus Striatum/drug effects , Dopamine Agents/pharmacology , Homeostasis/genetics , Interpersonal Relations , Ivermectin/pharmacology , Levodopa/pharmacology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Oxidopamine , Reflex, Startle/drug effects , Synaptic Transmission/genetics
16.
J Vis Exp ; (109): e53770, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-27078261

ABSTRACT

Prior to testing novel therapeutics in humans, short and long term preclinical (i.e., animal), repetitive pharmacological and toxicological testing is required. In most cases, the preferred route of administration is via oral delivery. At the present time, oral delivery is mostly accomplished using an oral gavage procedure, in part, because it can achieve consistent and precise dosing in the animal model. Although this method is well established it does have complications that can result in a high rate of animal attrition. To this end, the procedure introduced here describes an alternative to the oral gavage method in which the desired drug is incorporated into a tastant, orally dissolving strip (ODS) that can simply be presented to the test animal where it is then rapidly taken up with minimal manipulation of the test subject. Herein, we demonstrate that preclinical, oral drug delivery using the ODS method represents a safe, convenient, and humane alternative to oral gavage.


Subject(s)
Administration, Oral , Disease Models, Animal , Drug Delivery Systems/methods , Pharmaceutical Preparations/administration & dosage , Animals
17.
Tumour Biol ; 37(6): 8097-105, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26715269

ABSTRACT

Secreted phospholipases A2 (sPLA2) are suggested to play an important role in inflammation and tumorigenesis. Different mechanisms of epigenetic regulation are involved in the control of group IIA, III and X sPLA2s expression in cancer cells, but group V sPLA2 (GV-PLA2) in this respect has not been studied. Here, we demonstrate the role of epigenetic mechanisms in regulation of GV-PLA2 expression in different cell lines originating from leukaemia and solid cancers. In blood leukocytes from leukaemic patients, levels of GV-PLA2 transcripts were significantly lower in comparison to those from healthy individuals. Similarly, in DU-145 and PC-3 prostate and CAL-51 and MCF-7 mammary cancer cell lines, levels of GV-PLA2 transcripts were significantly lower in relation to those found in normal epithelial cells of prostate or mammary. By sequencing and methylation-specific high-resolution melting (MS-HRM) analyses of bisulphite-modified DNA, distinct CpG sites in the GV-PLA2 promoter region were identified that were differentially methylated in cancer cells in comparison to normal epithelial and endothelial cells. Spearman rank order analysis revealed a significant negative correlation between the methylation degree and the cellular expression of GV-PLA2 (r = -0.697; p = 0.01). The effects of demethylating agent (5-aza-2'-deoxycytidine) and histone deacetylase inhibitor (trichostatin A) on GV-PLA2 transcription in the analysed cells confirmed the importance of DNA methylation and histone modification in the regulation of the GV-PLA2 gene expression in leukaemic, prostate and mammary cancer cell lines. The exposure of tumour cells to human recombinant GV-PLA2 resulted in a reduced colony forming activity of MCF-7, HepG2 and PC-3 cells, but not of DU-145 cells suggesting a cell-type-dependent effect of GV-PLA2 on cell growth. In conclusion, our results suggest that epigenetic mechanisms such as DNA methylation and histone modification play an important role in downregulation of GV-PLA2 expression in cancer cells.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Group V Phospholipases A2/genetics , Neoplasms/genetics , Neoplasms/pathology , Case-Control Studies , Cell Proliferation , Cells, Cultured , Humans , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sulfites/chemistry
18.
J Neuroimmunol ; 285: 169-79, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26198936

ABSTRACT

The present investigation tested the role of ATP-activated P2X7 receptors (P2X7Rs) in alcohol-induced brain damage using a model that combines intragastric (iG) ethanol feeding and high fat diet in C57BL/6J mice (Hybrid). The Hybrid paradigm caused increased levels of pro-inflammatory markers, changes in microglia and astrocytes, reduced levels of neuronal marker NeuN and increased P2X7R expression in ethanol-sensitive brain regions. Observed changes in P2X7R and NeuN expression were more pronounced in Hybrid paradigm with inclusion of additional weekly binges. In addition, high fat diet during Hybrid exposure aggravated the increase in P2X7R expression and activation of glial cells.


Subject(s)
Diet, High-Fat/adverse effects , Ethanol/administration & dosage , Inflammation Mediators/metabolism , Neurons/metabolism , Receptors, Purinergic P2X7/biosynthesis , Up-Regulation/physiology , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Cell Count/methods , Ethanol/toxicity , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/pathology , Up-Regulation/drug effects
19.
Mol Pharmacol ; 86(6): 635-46, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25245406

ABSTRACT

A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABA(A)Rs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABA(A)Rs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol.


Subject(s)
Brain/drug effects , Ethanol/pharmacology , Receptors, GABA-A/drug effects , Receptors, Glycine/drug effects , Animals , Female , Models, Molecular , Pregnanolone/pharmacology , Receptors, GABA-A/chemistry , Receptors, Glycine/chemistry , Structure-Activity Relationship , Xenopus laevis , gamma-Aminobutyric Acid/pharmacology
20.
Neuroreport ; 25(13): 1018-23, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25004078

ABSTRACT

Ivermectin (IVM), an FDA approved anthelmintic agent, can significantly reduce ethanol intake in mice following acute administration. The current study evaluates the sustainability and safety of multiday IVM administration in reducing 10% v/v ethyl alcohol (10E) intake in mice at a dose shown to be safe in humans. We tested the effect of 10-day administration of IVM (3.0 mg/kg/day; intraperitoneally) on reducing 10E intake in C57BL/6J mice using a 24-h, two-bottle choice paradigm. On the 10th day of IVM administration, mice were sacrificed at 0, 0.5, 2, 8, 32, 48, and 72 h after injection. Brain tissue and plasma samples were collected and analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Analysis of variance (ANOVA) was used to assess the effect of 10-day IVM administration on 10E intake, 10E preference, water intake, and total fluid intake with Dunnett's multiple comparison post-hoc test. Individual Student's t-tests were also used to further quantify changes in these dependent variables. IVM significantly decreased 10E intake over a 9-day period (P<0.01). Pre-IVM 10E intake was 9.1±3.2 g/kg/24 h. Following the 9th day of IVM injections, intake dropped by almost 30% (P<0.05). IVM had no effect on total water intake or mouse weight throughout the study; however, there was a significant decrease in both preference for 10E (P<0.01) and total fluid intake (P<0.05). Multiday administration of IVM significantly reduces 10E intake and preference in animals without causing any apparent adverse effects at a dose shown to be safe in humans.


Subject(s)
Alcohol Deterrents/administration & dosage , Alcohol Drinking/drug therapy , Ivermectin/administration & dosage , Alcohol Deterrents/pharmacokinetics , Analysis of Variance , Animals , Blood Chemical Analysis , Body Weight , Brain/drug effects , Brain/metabolism , Central Nervous System Depressants/administration & dosage , Choice Behavior/drug effects , Chromatography, Liquid , Drinking Behavior/drug effects , Drinking Water/administration & dosage , Ethanol/administration & dosage , Food Preferences/drug effects , Ivermectin/pharmacokinetics , Male , Mice, Inbred C57BL , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...