Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 160: 144-153, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-29803189

ABSTRACT

One of the crucial and unsolved problems of the airborne carbon nanoparticles is the role played by the adsorbed environmental pollutants on their toxicological effect. Indeed, in the urban areas, the carbon nanoparticles usually adsorb some atmospheric contaminants, whose one of the leading representatives is the benzo(α)pyrene. Herein, we used the proteomics to investigate the alteration of toxicological pathways due to the carbon nanopowder-benzo(α)pyrene complex in comparison with the two contaminants administered alone on human skin-derived fibroblasts (hSDFs) exposed for 8 days in semi-static conditions. The preliminary confocal microscopy observations highlighted that carbon-nanopowder was able to pass through the cell membranes and accumulate into the cytoplasm both when administered alone and with the adsorbed benzo(α)pyrene. Proteomics revealed that the effect of carbon nanopowder-benzo(α)pyrene complex seems to be related to a new toxicological behavior instead of simple additive or synergistic effects. In detail, the cellular pathways modulated by the complex were mainly related to energy shift (glycolysis and pentose phosphate pathway), apoptosis, stress response and cellular trafficking.


Subject(s)
Benzo(a)pyrene/toxicity , Carbon/toxicity , Environmental Pollutants/toxicity , Fibroblasts/drug effects , Nanoparticles/toxicity , Adsorption , Benzo(a)pyrene/chemistry , Carbon/chemistry , Cell Membrane/metabolism , Cells, Cultured , Environmental Pollutants/chemistry , Humans , Nanoparticles/chemistry , Proteomics , Skin/cytology
2.
Nanotoxicology ; 11(3): 371-381, 2017 04.
Article in English | MEDLINE | ID: mdl-28285553

ABSTRACT

Carbon-based nanoparticles (CBNs) are largely distributed worldwide due to fossil fuel combustion and their presence in many consumer products. In addition to their proven toxicological effects in several biological models, attention in recent years has focussed on the role played by CBNs as Trojan-horse carriers for adsorbed environmental pollutants. This role has not been conclusively determined to date because CBNs can decrease the bioavailability of contaminants or represent an additional source of intake. Herein, we evaluated the intake, transport and distribution of one of the carbon-based powders, the so-called carbon nanopowder (CNPW), and benzo(α)pyrene, when administered alone and in co-exposure to Danio rerio embryos. Data obtained by means of advanced microscopic techniques illustrated that the "particle-specific" effect induced a modification in the accumulation of benzo(α)pyrene, which is forced to follow the distribution of the physical pollutant instead of its natural bioaccumulation. The combined results from functional proteomics and gene transcription analysis highlighted the different biochemical pathways involved in the action of the two different contaminants administered alone and when bound together. In particular, we observed a clear change in several proteins involved in the homeostatic response to hypoxia only after exposure to the CNPW or co-exposure to the mixture, whereas exposure to benzo(α)pyrene alone mainly modified structural proteins. The entire dataset suggested a Trojan-horse mechanism involved in the biological impacts on Danio rerio embryos especially due to different bioaccumulation pathways and cellular targets.


Subject(s)
Benzo(a)pyrene/pharmacokinetics , Carbon/pharmacokinetics , Environmental Pollutants/pharmacokinetics , Nanoparticles/metabolism , Animals , Benzo(a)pyrene/toxicity , Carbon/toxicity , Environmental Pollutants/toxicity , Nanoparticles/toxicity , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...