Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 25(8): 2544-2559, 2019 08.
Article in English | MEDLINE | ID: mdl-31152499

ABSTRACT

Substantial interannual variability in marine fish recruitment (i.e., the number of young fish entering a fishery each year) has been hypothesized to be related to whether the timing of fish spawning matches that of seasonal plankton blooms. Environmental processes that control the phenology of blooms, such as stratification, may differ from those that influence fish spawning, such as temperature-linked reproductive maturation. These different controlling mechanisms could cause the timing of these events to diverge under climate change with negative consequences for fisheries. We use an earth system model to examine the impact of a high-emissions, climate-warming scenario (RCP8.5) on the future spawning time of two classes of temperate, epipelagic fishes: "geographic spawners" whose spawning grounds are defined by fixed geographic features (e.g., rivers, estuaries, reefs) and "environmental spawners" whose spawning grounds move responding to variations in environmental properties, such as temperature. By the century's end, our results indicate that projections of increased stratification cause spring and summer phytoplankton blooms to start 16 days earlier on average (±0.05 days SE) at latitudes >40°N. The temperature-linked phenology of geographic spawners changes at a rate twice as fast as phytoplankton, causing these fishes to spawn before the bloom starts across >85% of this region. "Extreme events," defined here as seasonal mismatches >30 days that could lead to fish recruitment failure, increase 10-fold for geographic spawners in many areas under the RCP8.5 scenario. Mismatches between environmental spawners and phytoplankton were smaller and less widespread, although sizable mismatches still emerged in some regions. This indicates that range shifts undertaken by environmental spawners may increase the resiliency of fishes to climate change impacts associated with phenological mismatches, potentially buffering against declines in larval fish survival, recruitment, and fisheries. Our model results are supported by empirical evidence from ecosystems with multidecadal observations of both fish and phytoplankton phenology.


Subject(s)
Climate Change , Phytoplankton , Animals , Ecosystem , Fisheries , Fishes , Seasons
2.
Proc Natl Acad Sci U S A ; 114(8): E1441-E1449, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28115722

ABSTRACT

Photosynthesis fuels marine food webs, yet differences in fish catch across globally distributed marine ecosystems far exceed differences in net primary production (NPP). We consider the hypothesis that ecosystem-level variations in pelagic and benthic energy flows from phytoplankton to fish, trophic transfer efficiencies, and fishing effort can quantitatively reconcile this contrast in an energetically consistent manner. To test this hypothesis, we enlist global fish catch data that include previously neglected contributions from small-scale fisheries, a synthesis of global fishing effort, and plankton food web energy flux estimates from a prototype high-resolution global earth system model (ESM). After removing a small number of lightly fished ecosystems, stark interregional differences in fish catch per unit area can be explained (r = 0.79) with an energy-based model that (i) considers dynamic interregional differences in benthic and pelagic energy pathways connecting phytoplankton and fish, (ii) depresses trophic transfer efficiencies in the tropics and, less critically, (iii) associates elevated trophic transfer efficiencies with benthic-predominant systems. Model catch estimates are generally within a factor of 2 of values spanning two orders of magnitude. Climate change projections show that the same macroecological patterns explaining dramatic regional catch differences in the contemporary ocean amplify catch trends, producing changes that may exceed 50% in some regions by the end of the 21st century under high-emissions scenarios. Models failing to resolve these trophodynamic patterns may significantly underestimate regional fisheries catch trends and hinder adaptation to climate change.


Subject(s)
Fisheries/statistics & numerical data , Adaptation, Physiological/physiology , Animals , Climate Change/statistics & numerical data , Ecosystem , Fishes/physiology , Food Chain , Models, Biological , Oceans and Seas , Plankton/physiology
3.
Ann Rev Mar Sci ; 9: 469-493, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28045355

ABSTRACT

Anchovy and sardine populated productive ocean regions over hundreds of thousands of years under a naturally varying climate, and are now subject to climate change of equal or greater magnitude occurring over decades to centuries. We hypothesize that anchovy and sardine populations are limited in size by the supply of nitrogen from outside their habitats originating from upwelling, mixing, and rivers. Projections of the responses of anchovy and sardine to climate change rely on a range of model types and consideration of the effects of climate on lower trophic levels, the effects of fishing on higher trophic levels, and the traits of these two types of fish. Distribution, phenology, nutrient supply, plankton composition and production, habitat compression, fishing, and acclimation and adaptation may be affected by ocean warming, acidification, deoxygenation, and altered hydrology. Observations of populations and evaluation of model skill are essential to resolve the effects of climate change on these fish.


Subject(s)
Climate Change , Ecosystem , Fishes , Animals , Climate , Rivers
4.
Proc Natl Acad Sci U S A ; 112(30): E4065-74, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26159416

ABSTRACT

Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends.


Subject(s)
Climate Change , Fishes/embryology , Fishes/physiology , Animals , California , Databases, Factual , Ecosystem , El Nino-Southern Oscillation , Geography , Models, Theoretical , Normal Distribution , Seasons , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...