Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 24(16): 3970-3974, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29378085

ABSTRACT

The first general protocol for the direct reductive N-functionalization of aliphatic nitro compounds is presented. The nitro group is partially reduced to a nitrenoid, with a mild and readily available combination of B2 pin2 and zinc organyls. Thereby, the formation of an unstable nitroso intermediate is avoided, which has so far severely limited reductive transformations of aliphatic nitro compounds. The reaction is concluded by an electrophilic amination of zinc organyls.

2.
Angew Chem Int Ed Engl ; 56(38): 11570-11574, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28727904

ABSTRACT

An exceptionally general electrophilic amination, which directly transforms commercially available nitroarenes into alkylated aromatic aminoboranes with zinc organyl compounds was developed. The reaction starts with a two-step partial reduction of the nitro group to a nitrenoid, which is used in situ as the electrophilic amination reagent. To facilitate isolation, the resulting air- and moisture-sensitive aminoboranes were reacted with a range of electrophiles. The method not only represents a direct transformation of nitro compounds into electrophilic amination reagents but also provides an elegant alternative to dehydrocoupling methods for the generation of aminoboranes.

3.
Chemistry ; 23(48): 11578-11586, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28636753

ABSTRACT

Electrophilic halogenating agents are an important class of reagents in chemical synthesis. Herein, we show that sterically demanding bromiranium ions with weakly coordinating counterions are highly reactive electrophilic brominating agents. Despite their high reactivity these reagents are stable, in one case even under ambient conditions and can be applied in electrophilic halogenations of alkenes as well as heteroatoms.

4.
Chemistry ; 21(17): 6371-4, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25688729

ABSTRACT

A formal intermolecular [2+2+2] cycloaddition reaction of enynes to aldehydes is presented, which can be realized in the presence of a simple and benign calcium catalyst. The reaction proceeds with excellent chemo, regio- and diastereoselectivity and leads to a one-step assembly of highly interesting bicyclic building blocks containing up to three stereocenters from simple precursors via a new type of skeletal rearrangement of enynes. The observed diastereoselectivity is accounted for by two different mechanistic proposals. The first one engages mechanistic prospects arising from a gold catalyzed reaction in the absence of the stabilizing gold substituent. The second proposal involves an unprecedented cyclization-carbonyl allene ene reaction-hydroalkoxylation cascade.

SELECTION OF CITATIONS
SEARCH DETAIL
...