Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Redox Biol ; 73: 103167, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688060

ABSTRACT

Sulfide-releasing compounds reduce reperfusion injury by decreasing mitochondria-derived reactive oxygen species production. We previously characterised ammonium tetrathiomolybdate (ATTM), a clinically used copper chelator, as a sulfide donor in rodents. Here we assessed translation to large mammals prior to clinical testing. In healthy pigs an intravenous ATTM dose escalation revealed a reproducible pharmacokinetic/pharmacodynamic (PK/PD) relationship with minimal adverse clinical or biochemical events. In a myocardial infarction (1-h occlusion of the left anterior descending coronary artery)-reperfusion model, intravenous ATTM or saline was commenced just prior to reperfusion. ATTM protected the heart (24-h histological examination) in a drug-exposure-dependent manner (r2 = 0.58, p < 0.05). Blood troponin T levels were significantly (p < 0.05) lower in ATTM-treated animals while myocardial glutathione peroxidase activity, an antioxidant selenoprotein, was elevated (p < 0.05). Overall, our study represents a significant advance in the development of sulfides as therapeutics and underlines the potential of ATTM as a novel adjunct therapy for reperfusion injury. Mechanistically, our study suggests that modulating selenoprotein activity could represent an additional mode of action of sulfide-releasing drugs.


Subject(s)
Disease Models, Animal , Myocardial Reperfusion Injury , Sulfides , Animals , Swine , Sulfides/pharmacology , Sulfides/administration & dosage , Sulfides/therapeutic use , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Coronary Occlusion/drug therapy , Coronary Occlusion/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Glutathione Peroxidase/metabolism , Myocardium/metabolism , Myocardium/pathology , Male , Molybdenum
2.
Sci Rep ; 14(1): 3185, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326449

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) represent an in vitro model of cardiac function. Isolated iPSC-CMs, however, exhibit electrophysiological heterogeneity which hinders their utility in the study of certain cardiac currents. In the healthy adult heart, the current mediated by small conductance, calcium-activated potassium (SK) channels (ISK) is atrial-selective. Functional expression of ISK within atrial-like iPSC-CMs has not been explored thoroughly. The present study therefore aimed to investigate atrial-like iPSC-CMs as a model system for the study of ISK. iPSCs were differentiated using retinoic acid (RA) to produce iPSC-CMs which exhibited an atrial-like phenotype (RA-iPSC-CMs). Only 18% of isolated RA-iPSC-CMs responded to SK channel inhibition by UCL1684 and isolated iPSC-CMs exhibited substantial cell-to-cell electrophysiological heterogeneity. This variability was significantly reduced by patch clamp of RA-iPSC-CMs in situ as a monolayer (iPSC-ML). A novel method of electrical stimulation was developed to facilitate recording from iPSC-MLs via In situ Monolayer Patch clamp of Acutely Stimulated iPSC-CMs (IMPASC). Using IMPASC, > 95% of iPSC-MLs could be paced at a 1 Hz. In contrast to isolated RA-iPSC-CMs, 100% of RA-iPSC-MLs responded to UCL1684, with APD50 being prolonged by 16.0 ± 2.0 ms (p < 0.0001; n = 12). These data demonstrate that in conjunction with IMPASC, RA-iPSC-MLs represent an improved model for the study of ISK. IMPASC may be of wider value in the study of other ion channels that are inconsistently expressed in isolated iPSC-CMs and in pharmacological studies.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Adult , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Cell Differentiation/genetics , Heart Atria
3.
Pharmacol Ther ; 245: 108397, 2023 05.
Article in English | MEDLINE | ID: mdl-36996910

ABSTRACT

Myocardial healing following myocardial infarction (MI) toward either functional tissue repair or excessive scarring/heart failure, may depend on a complex interplay between nervous and immune system responses, myocardial ischemia/reperfusion injury factors, as well as genetic and epidemiological factors. Hence, enhancing cardiac repair post MI may require a more patient-specific approach targeting this complex interplay and not just the heart, bearing in mind that the dysregulation or modulation of just one of these systems or some of their mechanisms may determine the outcome either toward functional repair or toward heart failure. In this review we have elected to focus on existing preclinical and clinical in-vivo studies aimed at testing novel therapeutic approaches targeting the nervous and immune systems to trigger myocardial healing toward functional tissue repair. To this end, we have only selected clinical and preclinical in-vivo studies reporting on novel treatments targeting neuro-immune systems to ultimately treat MI. Next, we have grouped and reported treatments under each neuro-immune system. Finally, for each treatment we have assessed and reported the results of each clinical/preclinical study and then discussed their results collectively. This structured approach has been followed for each treatment discussed. To keep this review focused, we have deliberately omitted to cover other important and related research areas such as myocardial ischemia/reperfusion injury, cell and gene therapies as well as any ex-vivo and in-vitro studies. The review indicates that some of the treatments targeting the neuro-immune/inflammatory systems appear to induce beneficial effects remotely on the healing heart post MI, warranting further validation. These remote effects on the heart also indicates the presence of an overarching synergic response occurring across the nervous and immune systems in response to acute MI, which appear to influence cardiac tissue repair in different ways depending on age and timing of treatment delivery following MI. The cumulative evidence arising from this review allows also to make informed considerations on safe as opposed to detrimental treatments, and within the safe treatments to ascertain those associated with conflicting or supporting preclinical data, and those warranting further validation.


Subject(s)
Heart Failure , Myocardial Infarction , Myocardial Reperfusion Injury , Humans , Myocardial Infarction/drug therapy , Myocardium , Heart Failure/drug therapy , Immune System
4.
J Anat ; 242(1): 102-111, 2023 01.
Article in English | MEDLINE | ID: mdl-36484568

ABSTRACT

In a porcine experimental model of myocardial infarction, a localised, layer-specific, circumferential left ventricular strain metric has been shown to indicate chronic changes in ventricular function post-infarction more strongly than ejection fraction. This novel strain metric might therefore provide useful prognostic information clinically. In this study, existing clinical volume indices, global strains, and the novel, layer-specific strain were calculated for a large human cohort to assess variations in ventricular function and morphology with age, sex, and health status. Imaging and health data from the UK Biobank were obtained, including healthy volunteers and those with a history of cardiovascular illness. In total, 710 individuals were analysed and stratified by age, sex and health. Significant differences in all strain metrics were found between healthy and unhealthy populations, as well as between males and females. Significant differences in basal circumferential strain and global circumferential strain were found between healthy males and females, with males having smaller absolute values for both (all p ≤ 0.001). There were significant differences in the functional variables left ventricular ejection fraction, end-systolic volume, end-systolic volume index and mid-ventricular circumferential strain between healthy and unhealthy male cohorts aged 65-74 (all p ≤ 0.001). These results suggest that whilst regional circumferential strains may be useful clinically for assessing cardiovascular health, care must be taken to ensure critical values are indexed correctly to age and sex, due to the differences in these values observed here.


Subject(s)
Myocardial Infarction , Ventricular Function, Left , Female , Humans , Male , Animals , Swine , Stroke Volume , Biological Specimen Banks , Magnetic Resonance Imaging , Myocardial Infarction/diagnostic imaging , United Kingdom
5.
Front Cardiovasc Med ; 9: 980628, 2022.
Article in English | MEDLINE | ID: mdl-36035957

ABSTRACT

Background: Adequate blood flow into coronary micro-arteries is essential for myocardial function. Here we assess the mechanisms responsible for amplifying blood flow into myogenically-contracting human and porcine intramyocardial micro-arteries ex vivo using endothelium-dependent and -independent vasodilators. Methods: Human and porcine atrial and ventricular small intramyocardial coronary arteries (IMCAs) were studied with pressure myography and imaged using confocal microscopy and serial section/3-D reconstruction EM. Results: 3D rendered ultrastructure images of human right atrial (RA-) IMCAs revealed extensive homo-and hetero-cellular contacts, including to longitudinally-arranged smooth muscle cells (l-SMCs) found between the endothelial cells (ECs) and radially-arranged medial SMCs (r-SMCs). Local and conducted vasodilatation followed focal application of bradykinin in both human and porcine RA-IMCAs, and relied on hyperpolarization of SMCs, but not nitric oxide. Bradykinin initiated asynchronous oscillations in endothelial cell Ca2+ in pressurized RA-IMCAs and, as previously shown in human RA-IMCAs, hyperpolarized porcine arteries. Immunolabelling showed small- and intermediate-conductance Ca2+-activated K+ channels (KCa) present in the endothelium of both species, and concentration-dependent vasodilation to bradykinin followed activation of these KCa channels. Extensive electrical coupling was demonstrated between r-SMCs and l-SMCs, providing an additional pathway to facilitate the well-established myoendothelial coupling. Conducted dilation was still evident in a human RA-IMCA with poor myogenic tone, and heterocellular contacts were visible in the 3D reconstructed artery. Hyperpolarization and conducted vasodilation was also observed to adenosine which, in contrast to bradykinin, was sensitive to combined block of ATP-sensitive (KATP) and inwardly rectifying (KIR) K+ channels. Conclusions: These data extend our understanding of the mechanisms that coordinate human coronary microvascular blood flow and the mechanistic overlap with porcine IMCAs. The unusual presence of l-SMCs provides an additional pathway for rapid intercellular signaling between cells of the coronary artery wall. Local and conducted vasodilation follow hyperpolarization of the ECs or SMCs, and contact-coupling between l-SMCs and r-SMCs likely facilitates this vasodilation.

6.
Int J Mol Sci ; 23(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35743073

ABSTRACT

Functional endothelial cells (EC) are a critical interface between blood vessels and the thrombogenic flowing blood. Disruption of this layer can lead to early thrombosis, inflammation, vessel restenosis, and, following coronary (CABG) or peripheral (PABG) artery bypass graft surgery, vein graft failure. Blood-derived ECs have shown potential for vascular tissue engineering applications. Here, we show the development and preliminary testing of a method for deriving porcine endothelial-like cells from blood obtained under clinical conditions for use in translational research. The derived cells show cobblestone morphology and expression of EC markers, similar to those seen in isolated porcine aortic ECs (PAEC), and when exposed to increasing shear stress, they remain viable and show mRNA expression of EC markers similar to PAEC. In addition, we confirm the feasibility of seeding endothelial-like cells onto a decellularised human vein scaffold with approximately 90% lumen coverage at lower passages, and show that increasing cell passage results in reduced endothelial coverage.


Subject(s)
Endothelial Cells , Tissue Engineering , Animals , Blood Vessel Prosthesis , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Saphenous Vein , Stress, Mechanical , Swine , Tissue Engineering/methods
8.
J Nanobiotechnology ; 20(1): 71, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35135545

ABSTRACT

Globally, millions of patients are affected by myocardial infarction or lower limb gangrene/amputation due to atherosclerosis. Available surgical treatment based on vein and synthetic grafts provides sub-optimal benefits. We engineered a highly flexible and mechanically robust nanotextile-based vascular graft (NanoGraft) by interweaving nanofibrous threads of poly-L-lactic acid to address the unmet need. The NanoGrafts were rendered impervious with selective fibrin deposition in the micropores by pre-clotting. The pre-clotted NanoGrafts (4 mm diameter) and ePTFE were implanted in a porcine carotid artery replacement model. The fibrin-laden porous milieu facilitated rapid endothelization by the transmural angiogenesis in the NanoGraft. In-vivo patency of NanoGrafts was 100% at 2- and 4-weeks, with no changes over time in lumen size, flow velocities, and minimal foreign-body inflammatory reaction. However, the patency of ePTFE at 2-week was 66% and showed marked infiltration, neointimal thickening, and poor host tissue integration. The study demonstrates the in-vivo feasibility and safety of a thin-layered vascular prosthesis, viz., NanoGraft, and its potential superiority over the commercial ePTFE.


Subject(s)
Blood Vessel Prosthesis Implantation , Nanofibers , Animals , Blood Vessel Prosthesis , Feasibility Studies , Humans , Polytetrafluoroethylene , Swine
9.
NMR Biomed ; 35(7): e4692, 2022 07.
Article in English | MEDLINE | ID: mdl-35040195

ABSTRACT

Cardiac motion results in image artefacts and quantification errors in many cardiovascular magnetic resonance (CMR) techniques, including microstructural assessment using diffusion tensor cardiovascular magnetic resonance (DT-CMR). Here, we develop a CMR-compatible isolated perfused porcine heart model that allows comparison of data obtained in beating and arrested states. Ten porcine hearts (8/10 for protocol optimisation) were harvested using a donor heart retrieval protocol and transported to the remote CMR facility. Langendorff perfusion in a 3D-printed chamber and perfusion circuit re-established contraction. Hearts were imaged using cine, parametric mapping and STEAM DT-CMR at cardiac phases with the minimum and maximum wall thickness. High potassium and lithium perfusates were then used to arrest the heart in a slack and contracted state, respectively. Imaging was repeated in both arrested states. After imaging, tissue was removed for subsequent histology in a location matched to the DT-CMR data using fiducial markers. Regular sustained contraction was successfully established in six out of 10 hearts, including the final five hearts. Imaging was performed in four hearts and one underwent the full protocol, including colocalised histology. The image quality was good and there was good agreement between DT-CMR data in equivalent beating and arrested states. Despite the use of autologous blood and dextran within the perfusate, T2 mapping results, DT-CMR measures and an increase in mass were consistent with development of myocardial oedema, resulting in failure to achieve a true diastolic-like state. A contiguous stack of 313 5-µm histological sections at and a 100-µm thick section showing cell morphology on 3D fluorescent confocal microscopy colocalised to DT-CMR data were obtained. A CMR-compatible isolated perfused beating heart setup for large animal hearts allows direct comparisons of beating and arrested heart data with subsequent colocalised histology, without the need for onsite preclinical facilities.


Subject(s)
Heart Transplantation , Animals , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Myocardium/pathology , Swine , Tissue Donors
10.
Cardiovasc Res ; 118(8): 1978-1992, 2022 06 29.
Article in English | MEDLINE | ID: mdl-34173824

ABSTRACT

AIMS: Coronary microvascular smooth muscle cells (SMCs) respond to luminal pressure by developing myogenic tone (MT), a process integral to the regulation of microvascular perfusion. The cellular mechanisms underlying poor myogenic reactivity in patients with heart valve disease are unknown and form the focus of this study. METHODS AND RESULTS: Intramyocardial coronary micro-arteries (IMCAs) isolated from human and pig right atrial (RA) appendage and left ventricular (LV) biopsies were studied using pressure myography combined with confocal microscopy. All RA- and LV-IMCAs from organ donors and pigs developed circa 25% MT. In contrast, 44% of human RA-IMCAs from 88 patients with heart valve disease had poor (<10%) MT yet retained cell viability and an ability to raise cytoplasmic Ca2+ in response to vasoconstrictor agents. Comparing across human heart chambers and species, we found that based on patient medical history and six tests, the strongest predictor of poor MT in IMCAs was increased expression of the synthetic marker caldesmon relative to the contractile marker SM-myosin heavy chain. In addition, high resolution imaging revealed a distinct layer of longitudinally aligned SMCs between ECs and radial SMCs, and we show poor MT was associated with disruptions in these cellular alignments. CONCLUSION: These data demonstrate the first use of atrial and ventricular biopsies from patients and pigs to reveal that impaired coronary MT reflects a switch of viable SMCs towards a synthetic phenotype, rather than a loss of SMC viability. These arteries represent a model for further studies of coronary microvascular contractile dysfunction.


Subject(s)
Heart Valve Diseases , Muscle, Smooth, Vascular , Animals , Coronary Vessels/pathology , Heart Valve Diseases/metabolism , Humans , Muscle Contraction , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Swine
11.
Nat Protoc ; 16(10): 4650-4675, 2021 10.
Article in English | MEDLINE | ID: mdl-34400840

ABSTRACT

Ca2+ handling within cardiac myocytes underpins coordinated contractile function within the beating heart. This protocol enables high spatial and temporal Ca2+ imaging of ex vivo multicellular myocardial strips. The endocardial surface is retained, and strips of 150-300-µm thickness are dissected, loaded with Ca2+ indicators and mounted within 1.5 h. A list of the equipment and reagents used and the key methodological aspects allowing the use of this technique on strips from any chamber of the mammalian heart are described. We have successfully used this protocol on human, pig and rat biopsy samples. On use of this protocol with intact endocardial endothelium, we demonstrated that the myocytes develop asynchronous spontaneous Ca2+ events, which can be ablated by electrically evoked Ca2+ transients, and subsequently redevelop spontaneously after cessation of stimulation. This protocol thus offers a rapid and reliable method for studying the Ca2+ signaling underpinning cardiomyocyte contraction, in both healthy and diseased tissue.


Subject(s)
Calcium Signaling , Myocardium , Myocytes, Cardiac , Animals , Myocardial Contraction , Rats , Swine
12.
Cells ; 10(5)2021 05 17.
Article in English | MEDLINE | ID: mdl-34067674

ABSTRACT

The cAMP analogue 8-Br-cAMP-AM (8-Br) confers marked protection against global ischaemia/reperfusion of isolated perfused heart. We tested the hypothesis that 8-Br is also protective under clinically relevant conditions (regional ischaemia) when applied either before ischemia or at the beginning of reperfusion, and this effect is associated with the mitochondrial permeability transition pore (MPTP). 8-Br (10 µM) was administered to Langendorff-perfused rat hearts for 5 min either before or at the end of 30 min regional ischaemia. Ca2+-induced mitochondria swelling (a measure of MPTP opening) and binding of hexokinase II (HKII) to mitochondria were assessed following the drug treatment at preischaemia. Haemodynamic function and ventricular arrhythmias were monitored during ischaemia and 2 h reperfusion. Infarct size was evaluated at the end of reperfusion. 8-Br administered before ischaemia attenuated ventricular arrhythmias, improved haemodynamic function, and reduced infarct size during ischaemia/reperfusion. Application of 8-Br at the end of ischaemia protected the heart during reperfusion. 8-Br promoted binding of HKII to the mitochondria and reduced Ca2+-induced mitochondria swelling. Thus, 8-Br protects the heart when administered before regional ischaemia or at the beginning of reperfusion. This effect is associated with inhibition of MPTP via binding of HKII to mitochondria, which may underlie the protective mechanism.


Subject(s)
8-Bromo Cyclic Adenosine Monophosphate/administration & dosage , Cardiovascular Agents/administration & dosage , Mitochondria, Heart/drug effects , Mitochondrial Permeability Transition Pore/metabolism , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , 8-Bromo Cyclic Adenosine Monophosphate/analogs & derivatives , Animals , Calcium/metabolism , Disease Models, Animal , Drug Administration Schedule , Hemodynamics/drug effects , Hexokinase/metabolism , Isolated Heart Preparation , Male , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Swelling/drug effects , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats, Wistar , Signal Transduction , Ventricular Function, Left/drug effects
13.
J Tissue Eng ; 12: 2041731420987529, 2021.
Article in English | MEDLINE | ID: mdl-33854749

ABSTRACT

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.

14.
J Neurochem ; 158(2): 105-118, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33675563

ABSTRACT

To evaluate the neuroprotection exerted by ketosis against acute damage of the mammalian central nervous system (CNS). Search engines were interrogated to identify experimental studies comparing the mitigating effect of ketosis (intervention) versus non-ketosis (control) on acute CNS damage. Primary endpoint was a reduction in mortality. Secondary endpoints were a reduction in neuronal damage and dysfunction, and an 'aggregated advantage' (composite of all primary and secondary endpoints). Hedges' g was the effect measure. Subgroup analyses evaluated the modulatory effect of age, insult type, and injury site. Meta-regression evaluated timing, type, and magnitude of intervention as predictors of neuroprotection. The selected publications were 49 experimental murine studies (period 1979-2020). The intervention reduced mortality (g 2.45, SE 0.48, p < .01), neuronal damage (g 1.96, SE 0.23, p < .01) and dysfunction (g 0.99, SE 0.10, p < .01). Reduction of mortality was particularly pronounced in the adult subgroup (g 2.71, SE 0.57, p < .01). The aggregated advantage of ketosis was stronger in the pediatric (g 3.98, SE 0.71, p < .01), brain (g 1.96, SE 0.18, p < .01), and ischemic insult (g 2.20, SE 0.23, p < .01) subgroups. Only the magnitude of intervention was a predictor of neuroprotection (g 0.07, SE 0.03, p 0.01 per every mmol/L increase in ketone levels). Ketosis exerts a potent neuroprotection against acute damage to the mammalian CNS in terms of reduction of mortality, of neuronal damage and dysfunction. Hematic levels of ketones are directly proportional to the effect size of neuroprotection.


Subject(s)
Central Nervous System Diseases/pathology , Ketosis/pathology , Neuroprotection , Animals , Brain Injuries, Traumatic/pathology , Diet, Ketogenic , Humans
15.
Cardiovasc Res ; 117(4): 1188-1201, 2021 03 21.
Article in English | MEDLINE | ID: mdl-32766828

ABSTRACT

AIMS: Succinate accumulates several-fold in the ischaemic heart and is then rapidly oxidized upon reperfusion, contributing to reactive oxygen species production by mitochondria. In addition, a significant amount of the accumulated succinate is released from the heart into the circulation at reperfusion, potentially activating the G-protein-coupled succinate receptor (SUCNR1). However, the factors that determine the proportion of succinate oxidation or release, and the mechanism of this release, are not known. METHODS AND RESULTS: To address these questions, we assessed the fate of accumulated succinate upon reperfusion of anoxic cardiomyocytes, and of the ischaemic heart both ex vivo and in vivo. The release of accumulated succinate was selective and was enhanced by acidification of the intracellular milieu. Furthermore, pharmacological inhibition, or haploinsufficiency of the monocarboxylate transporter 1 (MCT1) significantly decreased succinate efflux from the reperfused heart. CONCLUSION: Succinate release upon reperfusion of the ischaemic heart is mediated by MCT1 and is facilitated by the acidification of the myocardium during ischaemia. These findings will allow the signalling interaction between succinate released from reperfused ischaemic myocardium and SUCNR1 to be explored.


Subject(s)
Mitochondria, Heart/metabolism , Monocarboxylic Acid Transporters/metabolism , Myocardial Infarction/therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion/adverse effects , Myocytes, Cardiac/metabolism , Succinic Acid/metabolism , Symporters/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Female , Isolated Heart Preparation , Male , Metabolome , Mice, Inbred C57BL , Mice, Knockout , Monocarboxylic Acid Transporters/genetics , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/genetics , Oxidation-Reduction , Rats , Reactive Oxygen Species/metabolism , Receptors, G-Protein-Coupled/metabolism , Sus scrofa , Symporters/genetics , Time Factors
16.
BMC Med Res Methodol ; 20(1): 300, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33302878

ABSTRACT

BACKGROUND: Typically, subgroup analyses in clinical trials are conducted by comparing the intervention effect in each subgroup by means of an interaction test. However, trials are rarely, if ever, adequately powered for interaction tests, so clinically important interactions may go undetected. We discuss the application of Bayesian methods by using expert opinions alongside the trial data. We applied this methodology to the VeRDiCT trial investigating the effect of preoperative volume replacement therapy (VRT) versus no VRT (usual care) in diabetic patients undergoing cardiac surgery. Two subgroup effects were of clinical interest, a) preoperative renal failure and b) preoperative type of antidiabetic medication. METHODS: Clinical experts were identified within the VeRDiCT trial centre in the UK. A questionnaire was designed to elicit opinions on the impact of VRT on the primary outcome of time from surgery until medically fit for hospital discharge, in the different subgroups. Prior beliefs of the subgroup effect of VRT were elicited face-to-face using two unconditional and one conditional questions per subgroup analysis. The robustness of results to the 'community of priors' was assessed. The community of priors was built using the expert priors for the mean average treatment effect, the interaction effect or both in a Bayesian Cox proportional hazards model implemented in the STAN software in R. RESULTS: Expert opinions were obtained from 7 clinicians (6 cardiac surgeons and 1 cardiac anaesthetist). Participating experts believed VRT could reduce the length of recovery compared to usual care and the greatest benefit was expected in the subgroups with the more severe comorbidity. The Bayesian posterior estimates were more precise compared to the frequentist maximum likelihood estimate and were shifted toward the overall mean treatment effect. CONCLUSIONS: In the VeRDiCT trial, the Bayesian analysis did not provide evidence of a difference in treatment effect across subgroups. However, this approach increased the precision of the estimated subgroup effects and produced more stable treatment effect point estimates than the frequentist approach. Trial methodologists are encouraged to prospectively consider Bayesian subgroup analyses when low-powered interaction tests are planned. TRIAL REGISTRATION: ISRCTN, ISRCTN02159606 . Registered 29th October 2008.


Subject(s)
Expert Testimony , Bayes Theorem , Clinical Trials as Topic , Humans , Likelihood Functions , Proportional Hazards Models , Surveys and Questionnaires
17.
PLoS One ; 15(12): e0242908, 2020.
Article in English | MEDLINE | ID: mdl-33320865

ABSTRACT

PURPOSE: Volume indices and left ventricular ejection fraction (LVEF) are routinely used to assess cardiac function. Ventricular strain values may provide additional diagnostic information, but their reproducibility is unclear. This study therefore compares the repeatability and reproducibility of volumes, volume fraction, and regional ventricular strains, derived from cardiovascular magnetic resonance (CMR) imaging, across three software packages and between readers. METHODS: Seven readers analysed 16 short-axis CMR stacks of a porcine heart. Endocardial contours were manually drawn using OsiriX and Simpleware ScanIP and repeated in both softwares. The images were also contoured automatically in Circle CVI42. Endocardial global, apical, mid-ventricular, and basal circumferential strains, as well as end-diastolic and end-systolic volume and LVEF were compared. RESULTS: Bland-Altman analysis found systematic biases in contour length between software packages. Compared to OsiriX, contour lengths were shorter in both ScanIP (-1.9 cm) and CVI42 (-0.6 cm), causing statistically significant differences in end-diastolic and end-systolic volumes, and apical circumferential strain (all p<0.006). No differences were found for mid-ventricular, basal or global strains, or left ventricular ejection fraction (all p<0.007). All CVI42 results lay within the ranges of the OsiriX results. Intra-software differences were found to be lower than inter-software differences. CONCLUSION: OsiriX and CVI42 gave consistent results for all strain and volume metrics, with no statistical differences found between OsiriX and ScanIP for mid-ventricular, global or basal strains, or left ventricular ejection fraction. However, volumes were influenced by the choice of contouring software, suggesting care should be taken when comparing volumes across different software.


Subject(s)
Heart Ventricles/anatomy & histology , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging , Stress, Mechanical , Animals , Diastole , Image Processing, Computer-Assisted , Organ Size , Swine , Systole
18.
Indian J Thorac Cardiovasc Surg ; 36(6): 563-565, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33093751

ABSTRACT

The choice of ring for mitral valve repair is still largely left to the surgeon's preferences and there are no specific guidelines regulating this decision. Despite this previous researches have described important features appertaining to each of the different types of rings currently available. Particularly, the debate is still open in regards to the flexibility that these devices should or should not have. Later in this issue of the Journal, Panicker and colleagues have reported their results with flexible and rigid rings in mitral valve repair. The results are very interesting and once again are highlighting the importance of using the right ring for the right disease.

19.
Biomater Sci ; 8(16): 4639, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32725008

ABSTRACT

Correction for 'Design, development, testing at ISO standards and in vivo feasibility study of a novel polymeric heart valve prosthesis' by Joanna R. Stasiak et al., Biomater. Sci., 2020, DOI: .

20.
Biomater Sci ; 8(16): 4467-4480, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32608409

ABSTRACT

Clinically available prosthetic heart valves are life-saving, but imperfect: mechanical valves requiring anticoagulation therapy, whilst bioprosthetic valves have limited durability. Polymer valves offer the prospect of good durability without the need for anticoagulation. We report the design and development of a polymeric heart valve, its bench-testing at ISO standards, and preliminary extra-vivo and in vivo short-term feasibility. Prototypes were manufactured by injection moulding of styrenic block copolymers to achieve anisotropic mechanical properties. Design was by finite element stress-strain modelling, which has been reported previously, combined with feedback from bench and surgery-based testing using various combinations of materials, valve geometry and processing conditions. Bench testing was according to ISO 5840:2015 standards using an in vitro cardiovascular hydrodynamic testing system and an accelerated fatigue tester. Bench comparisons were made with a best-in-class bio-prosthesis. Preliminary clinical feasibility evaluations included extra-vivo and short-term (1-24 hours) in vivo testing in a sheep model. The optimised final prototype met the requirements of ISO standards with hydrodynamic performance equivalent to the best-in-class bioprosthesis. Bench durability of greater than 1.2 billion cycles (30 years equivalent) was achieved (still ongoing). Extra-vivo sequential testing (n = 8) allowed refinement of external diameter, 3D shape, a low profile, flexibility, suturability, and testing of compatibility to magnetic resonance imaging and clinical sterilisation. In vivo short-term (1-24 hours) feasibility (n = 3) confirmed good suturability, no mechanical failure, no trans-valvular regurgitation, competitive trans-valvular gradients, and good biocompatibility at histopathology. We have developed and tested at ISO standards a novel prosthetic heart valve featuring competitive bench-based hydrodynamics and durability, well beyond the ISO requirements and comparable to a best-in-class bioprosthesis. In vivo short-term feasibility testing confirmed preliminary safety, functionality and biocompatibility, supporting progression to a long-term efficacy trial.


Subject(s)
Bioprosthesis , Heart Valve Prosthesis , Animals , Feasibility Studies , Materials Testing , Polymers , Prosthesis Design , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...