Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 24(1): 99, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932333

ABSTRACT

BACKGROUND: Longitudinal single-cell sequencing experiments of patient-derived models are increasingly employed to investigate cancer evolution. In this context, robust computational methods are needed to properly exploit the mutational profiles of single cells generated via variant calling, in order to reconstruct the evolutionary history of a tumor and characterize the impact of therapeutic strategies, such as the administration of drugs. To this end, we have recently developed the LACE framework for the Longitudinal Analysis of Cancer Evolution. RESULTS: The LACE 2.0 release aimed at inferring longitudinal clonal trees enhances the original framework with new key functionalities: an improved data management for preprocessing of standard variant calling data, a reworked inference engine, and direct connection to public databases. CONCLUSIONS: All of this is accessible through a new and interactive Shiny R graphical interface offering the possibility to apply filters helpful in discriminating relevant or potential driver mutations, set up inferential parameters, and visualize the results. The software is available at: github.com/BIMIB-DISCo/LACE.


Subject(s)
Neoplasms , Software , Humans , Neoplasms/genetics , Clone Cells
2.
BMC Bioinformatics ; 23(1): 269, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35804300

ABSTRACT

BACKGROUND: The combined effects of biological variability and measurement-related errors on cancer sequencing data remain largely unexplored. However, the spatio-temporal simulation of multi-cellular systems provides a powerful instrument to address this issue. In particular, efficient algorithmic frameworks are needed to overcome the harsh trade-off between scalability and expressivity, so to allow one to simulate both realistic cancer evolution scenarios and the related sequencing experiments, which can then be used to benchmark downstream bioinformatics methods. RESULT: We introduce a Julia package for SPAtial Cancer Evolution (J-SPACE), which allows one to model and simulate a broad set of experimental scenarios, phenomenological rules and sequencing settings.Specifically, J-SPACE simulates the spatial dynamics of cells as a continuous-time multi-type birth-death stochastic process on a arbitrary graph, employing different rules of interaction and an optimised Gillespie algorithm. The evolutionary dynamics of genomic alterations (single-nucleotide variants and indels) is simulated either under the Infinite Sites Assumption or several different substitution models, including one based on mutational signatures. After mimicking the spatial sampling of tumour cells, J-SPACE returns the related phylogenetic model, and allows one to generate synthetic reads from several Next-Generation Sequencing (NGS) platforms, via the ART read simulator. The results are finally returned in standard FASTA, FASTQ, SAM, ALN and Newick file formats. CONCLUSION: J-SPACE is designed to efficiently simulate the heterogeneous behaviour of a large number of cancer cells and produces a rich set of outputs. Our framework is useful to investigate the emergent spatial dynamics of cancer subpopulations, as well as to assess the impact of incomplete sampling and of experiment-specific errors. Importantly, the output of J-SPACE is designed to allow the performance assessment of downstream bioinformatics pipelines processing NGS data. J-SPACE is freely available at: https://github.com/BIMIB-DISCo/J-Space.jl .


Subject(s)
Neoplasms , Software , Computer Simulation , High-Throughput Nucleotide Sequencing/methods , Humans , Neoplasms/genetics , Neoplasms/pathology , Phylogeny
4.
Interface Focus ; 11(1): 20190136, 2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33343875

ABSTRACT

Osteoporosis is a bone disease characterized by brittle bone and increased fracture incidence. With ageing societies worldwide, the disease presents a high burden on health systems. Furthermore, there are limited treatments for osteoporosis with just two anabolic pharmacological agents approved by the US Food and Drug Administration. Healthy bones are believed to be maintained via an intricate relationship between dual biochemical and mechanical (bio-mechanical) stimulations. It is widely considered that osteoporosis emerges as a result of disturbances to said relationship. The mechanotransduction process is key to this balance, and disruption of its dynamics in bone cells plays a role in osteoporosis development. Nonetheless, the exact details and mechanisms that drive and secure the health of bones are still elusive at the cellular and molecular scales. This study examined the dual modulation of mechanical stimulation and mechanotransduction activation dynamics in an osteoblast (OB). The aim was to find patterns of mechanotransduction dynamics demonstrating a significant change that can be mapped to alterations in the OB responses, specifically at the level of gene expression and osteogenic markers such as alkaline phosphatase. This was achieved using a three-dimensional hybrid multiscale computational model simulating mechanotransduction in the OB and its interaction with the extracellular matrix, combined with a numerical analytical technique. The model and the analysis method predict that within the noise of mechanotransduction, owing to modulation of the bio-mechanical stimulus and consequent gene expression, there are unique events that provide signatures for a shift in the system's dynamics. Furthermore, the study uncovered molecular interactions that can be potential drug targets.

5.
BMC Bioinformatics ; 21(1): 114, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32183690

ABSTRACT

BACKGROUND: Mechanotransduction in bone cells plays a pivotal role in osteoblast differentiation and bone remodelling. Mechanotransduction provides the link between modulation of the extracellular matrix by mechanical load and intracellular activity. By controlling the balance between the intracellular and extracellular domains, mechanotransduction determines the optimum functionality of skeletal dynamics. Failure of this relationship was suggested to contribute to bone-related diseases such as osteoporosis. RESULTS: A hybrid mechanical and agent-based model (Mech-ABM), simulating mechanotransduction in a single osteoblast under external mechanical perturbations, was utilised to simulate and examine modulation of the activation dynamics of molecules within mechanotransduction on the cellular response to mechanical stimulation. The number of molecules and their fluctuations have been analysed in terms of recurrences of critical events. A numerical approach has been developed to invert subordination processes and to extract the direction processes from the molecular signals in order to derive the distribution of recurring events. These predict that there are large fluctuations enclosing information hidden in the noise which is beyond the dynamic variations of molecular baselines. Moreover, studying the system under different mechanical load regimes and altered dynamics of feedback loops, illustrate that the waiting time distributions of each molecule are a signature of the system's state. CONCLUSIONS: The behaviours of the molecular waiting times change with the changing of mechanical load regimes and altered dynamics of feedback loops, presenting the same variation of patterns for similar interacting molecules and identifying specific alterations for key molecules in mechanotransduction. This methodology could be used to provide a new tool to identify potent molecular candidates to modulate mechanotransduction, hence accelerate drug discovery towards therapeutic targets for bone mass upregulation.


Subject(s)
Mechanotransduction, Cellular , Osteoblasts/metabolism , Extracellular Matrix , Humans , Proteins/genetics , Proteins/metabolism , Up-Regulation
6.
BMC Med Genomics ; 12(Suppl 6): 106, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31345216

ABSTRACT

BACKGROUND: Not all the mutations are equally important for the development of metastasis. What about their order? The survival of cancer cells from the primary tumour site to the secondary seeding sites depends on the occurrence of very few driver mutations promoting oncogenic cell behaviours. Usually these driver mutations are among the most effective clinically actionable target markers. The quantitative evaluation of the effects of a mutation across primary and secondary sites is an important challenging problem that can lead to better predictability of cancer progression trajectory. RESULTS: We introduce a quantitative model in the framework of Cellular Automata to investigate the effects of metabolic mutations and mutation order on cancer stemness and tumour cell migration from breast, blood to bone metastasised sites. Our approach models three types of mutations: driver, the order of which is relevant for the dynamics, metabolic which support cancer growth and are estimated from existing databases, and non-driver mutations. We integrate the model with bioinformatics analysis on a cancer mutation database that shows metabolism-modifying alterations constitute an important class of key cancer mutations. CONCLUSIONS: Our work provides a quantitative basis of how the order of driver mutations and the number of mutations altering metabolic processis matter for different cancer clones through their progression in breast, blood and bone compartments. This work is innovative because of multi compartment analysis and could impact proliferation of therapy-resistant clonal populations and patient survival. Mathematical modelling of the order of mutations is presented in terms of operators in an accessible way to the broad community of researchers in cancer models so to inspire further developments of this useful (and underused in biomedical models) methodology. We believe our results and the theoretical framework could also suggest experiments to measure the overall personalised cancer mutational signature.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Models, Biological , Mutation , Breast Neoplasms/metabolism , Humans , Neoplastic Stem Cells/pathology
7.
PLoS Comput Biol ; 11(5): e1004199, 2015 May.
Article in English | MEDLINE | ID: mdl-25978366

ABSTRACT

Ductal carcinoma is one of the most common cancers among women, and the main cause of death is the formation of metastases. The development of metastases is caused by cancer cells that migrate from the primary tumour site (the mammary duct) through the blood vessels and extravasating they initiate metastasis. Here, we propose a multi-compartment model which mimics the dynamics of tumoural cells in the mammary duct, in the circulatory system and in the bone. Through a branching process model, we describe the relation between the survival times and the four markers mainly involved in metastatic breast cancer (EPCAM, CD47, CD44 and MET). In particular, the model takes into account the gene expression profile of circulating tumour cells to predict personalised survival probability. We also include the administration of drugs as bisphosphonates, which reduce the formation of circulating tumour cells and their survival in the blood vessels, in order to analyse the dynamic changes induced by the therapy. We analyse the effects of circulating tumour cells on the progression of the disease providing a quantitative measure of the cell driver mutations needed for invading the bone tissue. Our model allows to design intervention scenarios that alter the patient-specific survival probability by modifying the populations of circulating tumour cells and it could be extended to other cancer metastasis dynamics.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/blood , Carcinoma, Ductal, Breast/pathology , Models, Biological , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Computer Simulation , Disease Progression , Female , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Survival Rate , Transforming Growth Factor beta/biosynthesis
8.
PLoS One ; 9(2): e88533, 2014.
Article in English | MEDLINE | ID: mdl-24586338

ABSTRACT

Recent works have highlighted a double role for the Transforming Growth Factor ß (TGF-ß): it inhibits cancer in healthy cells and potentiates tumor progression during late stage of tumorigenicity, respectively; therefore it has been termed the "Jekyll and Hyde" of cancer or, alternatively, an "excellent servant but a bad master". It remains unclear how this molecule could have the two opposite behaviours. In this work, we propose a TGF-ß multi scale mathematical model at molecular, cellular and tissue scales. The multi scalar behaviours of the TGF-ß are described by three coupled models built up together which can approximatively be related to distinct microscopic, mesoscopic, and macroscopic scales, respectively. We first model the dynamics of TGF-ß at the single-cell level by taking into account the intracellular and extracellular balance and the autocrine and paracrine behaviour of TGF-ß. Then we use the average estimates of the TGF-ß from the first model to understand its dynamics in a model of duct breast tissue. Although the cellular model and the tissue model describe phenomena at different time scales, their cumulative dynamics explain the changes in the role of TGF-ß in the progression from healthy to pre-tumoral to cancer. We estimate various parameters by using available gene expression datasets. Despite the fact that our model does not describe an explicit tissue geometry, it provides quantitative inference on the stage and progression of breast cancer tissue invasion that could be compared with epidemiological data in literature. Finally in the last model, we investigated the invasion of breast cancer cells in the bone niches and the subsequent disregulation of bone remodeling processes. The bone model provides an effective description of the bone dynamics in healthy and early stages cancer conditions and offers an evolutionary ecological perspective of the dynamics of the competition between cancer and healthy cells.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/physiopathology , Models, Biological , Neoplasm Invasiveness/physiopathology , Neoplasm Metastasis/physiopathology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/physiology , Autocrine Communication/physiology , Breast Neoplasms/metabolism , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , Mammary Glands, Human/metabolism , Molecular Dynamics Simulation , Paracrine Communication/physiology
9.
Article in English | MEDLINE | ID: mdl-23410354

ABSTRACT

We analyze the out-of-equilibrium behavior of exclusion processes where agents interact with their nearest neighbors, and we study the short-range correlations which develop because of the exclusion and other contact interactions. The form of interactions we focus on, including adhesion and contact-preserving interactions, is especially relevant for migration processes of living cells. We show the local agent density and nearest-neighbor two-point correlations resulting from simulations on two-dimensional lattices in the transient regime where agents invade an initially empty space from a source and in the stationary regime between a source and a sink. We compare the results of simulations with the corresponding quantities derived from the master equation of the exclusion processes, and in both cases, we show that, during the invasion of space by agents, a wave of correlations travels with velocity v(t)~t(-1/2). The relative placement of this wave to the agent density front and the time dependence of its height may be used to discriminate between different forms of contact interactions or to quantitatively estimate the intensity of interactions. We discuss, in the stationary density profile between a full and an empty reservoir of agents, the presence of a discontinuity close to the empty reservoir. Then we develop a method for deriving approximate hydrodynamic limits of the processes. From the resulting systems of partial differential equations, we recover the self-similar behavior of the agent density and correlations during space invasion.


Subject(s)
Cell Adhesion/physiology , Cell Communication/physiology , Models, Biological , Animals , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...