Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1233838, 2023.
Article in English | MEDLINE | ID: mdl-37621888

ABSTRACT

Introduction: In situ and ex situ conservation are the two main approaches for preserving genetic diversity. The advantages and disadvantages of the two approaches have been discussed but their genetic effects have not been fully evaluated. Methods: In this study we investigate the effects of the two conservation approaches on genetic diversity in red clover. Seed samples collected from wild populations in Sweden and Norway in 1980, their subsequent generations created during seed regeneration at the gene bank and samples recollected from the same location as the original samples, were analyzed with microsatellite markers, alongside reference samples from cultivars. Results: Overall, there was a differentiation between cultivars and the wild material and between wild material from Sweden and Norway. In general, the original collections clustered together with the later generations of the same accession in the gene bank, and with the recollected samples from the same location, and the level of diversity remained the same among samples of the same accession. Limited gene flow from cultivated varieties to the wild populations was detected; however, some wild individuals are likely to be escapees or affected by gene flow. Discussion: In conclusion, there were examples of genetic changes within individual accessions both in situ and ex situ, as is also to be expected in any living population. However, we observed only limited genetic changes in both in situ and ex situ conservation over the generations included in this study and with the relatively large populations used in the ex situ conservation in the gene bank at NordGen.

2.
Microorganisms ; 9(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34683496

ABSTRACT

Plant diseases may survive and be spread by infected seeds. In this study we monitored the longevity of 14 seed-borne pathogens in 9 crop species commonly grown in the Nordic countries, in addition to a sample of sclerotia of Sclerotinia sclerotiorum. The data from the first 30 years of a 100-year seed storage experiment located in a natural -3.5 °C environment (permafrost) in Svalbard, Norway, are presented. To date, the pathogens, tested by traditional seed health testing methods (freezing blotter, agar plates, growing on tests), have survived. Linear regression analyses showed that the seed infection percentages of Drechslera dictyoides in meadow fescue, Drechslera phlei in timothy, and Septoria nodorum in wheat were significantly reduced compared to the percentages at the start of the experiment (from 63% to 34%, from 70% to 65%, and from 15% to 1%, respectively), and that Phoma betae in beet had increased significantly (from 43% to 56%). No trends in the infection percentage were observed over the years in Drechslera spp. in barley (fluctuating between 30% and 64%) or in Alternaria brassicicola in cabbage (fluctuating between 82% and 99%), nor in pathogens with low seed infection percentages at the start of the experiment. A major part of the stored sclerotia was viable after 30 years. To avoid the spread of seed-borne diseases, it is recommended that gene banks implement routines that avoid the use of infected seeds.

3.
Nat Plants ; 6(11): 1311-1317, 2020 11.
Article in English | MEDLINE | ID: mdl-33168982

ABSTRACT

Crop diversity underpins food security and adaptation to climate change. Concerted conservation efforts are needed to maintain and make this diversity available to plant scientists, breeders and farmers. Here we present the story of the rescue and reconstitution of the unique seed collection held in the international genebank of International Center for Agricultural Research in the Dry Areas (ICARDA) in Syria. Being among the first depositors to the Svalbard Global Seed Vault, ICARDA managed to safety duplicate more than 80% of its collection before the last staff had to leave the genebank in 2014 because of the war. Based on the safety duplicates, ICARDA since 2015 have rebuilt their collections and resumed distribution of seeds to users internationally from their new premises in Morocco and Lebanon. We describe the multifaceted and layered structure of the global system for the conservation and use of crop diversity that enabled this successful outcome. Genebanks do not work alone but in an increasingly strengthened and experienced multilateral system of governance, science, financial support and collaboration. This system underpins efforts to build sustainable and socially equitable agri-food systems.


Subject(s)
Conservation of Natural Resources , Seed Bank , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Genetic Variation
4.
Front Plant Sci ; 11: 1007, 2020.
Article in English | MEDLINE | ID: mdl-32719707

ABSTRACT

As part of conservation of plant genetic resources, long-term storage of seeds is highly relevant for genebanks. Here we present a systematic review and a meta-analysis of studies on seed longevity focusing on half-life (P50) under different storage conditions. Six studies were selected for the meta-analysis; in addition, a high number of additional references were included in the discussion of the results. The results show that under ambient conditions, half-life is short, from 5 to 10 years, while under more optimal conditions, which for orthodox seeds is at low humidity and low temperature, half-life is more in the 40-60 years range, although with large interspecies variation. Under long-term genebank conditions, with seeds dried to equilibrium and thereafter kept at minus 18-20°C in waterproof bags or jars, half-life can be twice or three times as long. In general, many of the grain legume seeds, as well as corn, common oat, and common barley are long-lived, while cereal rye, onion, garden lettuce, pepper, and some of the forage grasses are more short-lived. Conditions during maturation and harvesting influence longevity, and proper maturation and gentle handling are known to be of importance. Seed longevity models have been developed to predict final germination based on initial viability, temperature, humidity, storage time, and species information. We compared predicted germination to results from the long-term experiments. The predicted values were higher or much higher than the observed values, which demonstrate that something in the seed handling in the genebanks have not been optimal. Long-term studies are now available with data at least up to 60 years of storage. Our review shows that the knowledge and methodology developed for the conservation of plant genetic resources should also work for wild species of orthodox seed nature.

5.
Plants (Basel) ; 9(5)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370167

ABSTRACT

More than 30 years ago, the Nordic Gene Bank established a long-term experiment on seeds stored under permafrost conditions in an abandoned mine corridor in Svalbard, as a tool to monitor storage life under these conditions. The study included seeds from 16 Nordic agricultural and horticultural crops, each represented by two or three cultivars (altogether 38 accessions). All seeds were ultra-dried to 3%-5% moisture before being sealed in glass tubes. Germination tests were performed in accordance with the International Seed Testing Association (ISTA) protocols. At the initiation of the experiment, the samples showed good germination with the median value at 92%. The overall picture remained stable over the first twenty to twenty-five years. However, the variation became larger over time and at 30 years, the median value had dropped to 80%. At the lower end, with a high drop in germination, we found rye, wheat, and English ryegrass. At the upper end, we found Kentucky bluegrass and cucumber. The lowest germination was found in samples with the highest initial seed moisture levels. Pre-storage conditions are likely to be of major importance for longevity.

7.
Ambio ; 46(6): 630-643, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28215020

ABSTRACT

Climate change is likely to be one of the most important factors affecting our future food security. To mitigate negative impacts, we will require our crops to be more genetically diverse. Such diversity is available in crop wild relatives (CWRs), the wild taxa relatively closely related to crops and from which diverse traits can be transferred to the crop. Conservation of such genetic resources resides within the nation where they are found; therefore, national-level conservation recommendations are fundamental to global food security. We investigate the potential impact of climate change on CWR richness in Norway. The consequences of a 1.5 and 3.0 °C temperature rise were studied for the years 2030, 2050, 2070, 2080 and then compared to the present climate. The results indicate a pattern of shifting CWR richness from the south to the north, with increases in taxa turnover and in the numbers of threatened taxa. Recommendations for in situ and ex situ conservation actions over the short and long term for the priority CWRs in Norway are presented. The methods and recommendations developed here can be applied within other nations and at regional and global levels to improve the effectiveness of conservation actions and help ensure global food security.


Subject(s)
Climate Change , Conservation of Natural Resources , Crops, Agricultural , Agriculture , Food Supply , Norway
SELECTION OF CITATIONS
SEARCH DETAIL
...