Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 107(3-2): 035205, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37073071

ABSTRACT

It is shown that a subluminal electromagnetic plasma wave, propagating in phase with a background subluminal gravitational wave in a dispersive medium, can undergo parametric amplification. For these phenomena to occur, the dispersive characteristics of the two waves must properly match. The response frequencies of the two waves (medium dependent) must lie within a definite and restrictive range. The combined dynamics is represented by a Whitaker-Hill equation, the quintessential model for parametric instabilities. The exponential growth of the electromagnetic wave is displayed at the resonance; the plasma wave grows at the expense of the background gravitational wave. Different physical scenarios, where the phenomenon can be possible, are discussed.

2.
Chaos ; 30(10): 103120, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33138458

ABSTRACT

We present a phenomenological procedure of dealing with the COVID-19 (coronavirus disease 2019) data provided by government health agencies of 11 different countries. Usually, the exact or approximate solutions of susceptible-infected-recovered (or other) model(s) are obtained fitting the data by adjusting the time-independent parameters that are included in those models. Instead of that, in this work, we introduce dynamical parameters whose time-dependence may be phenomenologically obtained by adequately extrapolating a chosen subset of the daily provided data. This phenomenological approach works extremely well to properly adjust the number of infected (and removed) individuals in time for the countries we consider. Besides, it can handle the sub-epidemic events that some countries may experience. In this way, we obtain the evolution of the pandemic without using any a priori model based on differential equations.


Subject(s)
Coronavirus Infections/epidemiology , Disease Susceptibility , Pneumonia, Viral/epidemiology , Algorithms , Betacoronavirus , COVID-19 , Data Collection , Global Health , Humans , Models, Statistical , Pandemics , Quarantine , SARS-CoV-2 , Time Factors
3.
Phys Rev E ; 99(5-1): 053204, 2019 May.
Article in English | MEDLINE | ID: mdl-31212428

ABSTRACT

Using a generally covariant electrovortic (magnetofluid) formalism for relativistic plasmas, the dynamical evolution of a generalized vorticity (a combination of the magnetic and kinematic parts) is studied in a cosmological context. We derive macroscopic vorticity and magnetic field structures that can emerge in spatial equilibrium configurations of the relativistic plasma. These fields, however, evolve in time. These magnetic and velocity fields, self-consistently sustained in a plasma with arbitrary thermodynamics, constitute a diamagnetic state in the expanding universe. In particular, we explore a special class of magnetic and velocity field structures supported by a plasma in which the generalized vorticity vanishes. We derive a highly interesting characteristic of such "superconductor-like" fields in a cosmological plasmas in the radiation era in the early universe. In that case, the fields grow proportional to the scale factor, establishing a deep connection between the expanding universe and the primordial magnetic fields.

4.
Opt Express ; 25(22): 26405-26416, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092131

ABSTRACT

In the last ten years, the technology of differential geometry, ubiquitous in gravitational physics, has found its place in the field of optics. It has been successfully used in the design of optical metamaterials through a technique now known as "transformation optics." This method, however, only applies for the particular class of metamaterials known as impedance matched, that is, materials whose electric permittivity is equal to their magnetic permeability. In that case, the material may be described by a spacetime metric. In the present work we will introduce a generalization of the geometric methods of transformation optics to situations in which the material is not impedance matched. In such situations, the material -or more precisely, its constitutive tensor- will not be described by a metric only. We bring in a second tensor, with the local symmetries of the Weyl tensor, the "W-tensor." In the geometric optics approximation we show how the properties of the W-tensor are related to the asymmetric transmission of the material. We apply this feature to the design of a particularly interesting set of asymmetric materials. These materials are birefringent when light rays approach the material in a given direction, but behave just like vacuum when the rays have the opposite direction with the appropriate polarization (or, in some cases, independently of the polarization).

5.
Phys Rev Lett ; 118(5): 055101, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-28211707

ABSTRACT

The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.

6.
Phys Rev Lett ; 114(11): 115003, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25839284

ABSTRACT

The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.

7.
Phys Rev Lett ; 113(4): 045001, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25105624

ABSTRACT

The magnetic reconnection process is studied in relativistic pair plasmas when the thermal and inertial properties of the magnetohydrodynamical fluid are included. We find that in both Sweet-Parker and Petschek relativistic scenarios there is an increase of the reconnection rate owing to the thermal-inertial effects, both satisfying causality. To characterize the new effects we define a thermal-inertial number which is independent of the relativistic Lundquist number, implying that reconnection can be achieved even for vanishing resistivity as a result of only thermal-inertial effects. The current model has fundamental importance for relativistic collisionless reconnection, as it constitutes the simplest way to get reconnection rates faster than those accessible with the sole resistivity.

8.
Article in English | MEDLINE | ID: mdl-24032950

ABSTRACT

We study the self-modulation of a circularly polarized Alfvén wave in a strongly magnetized relativistic electron-positron plasma with finite temperature. This nonlinear wave corresponds to an exact solution of the equations, with a dispersion relation that has two branches. For a large magnetic field, the Alfvén branch has two different zones, which we call the normal dispersion zone (where dω/dk>0) and the anomalous dispersion zone (where dω/dk<0). A nonlinear Schrödinger equation is derived in the normal dispersion zone of the Alfvén wave, where the wave envelope can evolve as a periodic wave train or as a solitary wave, depending on the initial condition. The maximum growth rate of the modulational instability decreases as the temperature is increased. We also study the Alfvén wave propagation in the anomalous dispersion zone, where a nonlinear wave equation is obtained. However, in this zone the wave envelope can evolve only as a periodic wave train.

9.
Phys Rev Lett ; 109(17): 175003, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23215196

ABSTRACT

It is shown that the gradient "free-energy" contained in equilibrium spin vorticity can cause electromagnetic modes, in particular the light wave, to go unstable in a spin quantum plasma of mobile electrons embedded in a neutralizing ion background. For densities characteristic of both the solid state and very high density astrophysical systems, the growth rates are sufficiently high to overcome the expected collisional damping. Preliminary results suggest a powerful spin-inhomogeneity driven mechanism for stimulating light amplification.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 2): 046406, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22680585

ABSTRACT

We develop a nonlinear theory for self-modulation of a circularly polarized electromagnetic wave in a relativistic hot weakly magnetized electron-positron plasma. The case of parallel propagation along an ambient magnetic field is considered. A nonlinear Schrödinger equation is derived for the complex wave amplitude of a self-modulated wave packet. We show that the maximum growth rate of the modulational instability decreases as the temperature of the pair plasma increases. Depending on the initial conditions, the unstable wave envelope can evolve nonlinearly to either periodic wave trains or solitary waves. This theory has application to high-energy astrophysics and high-power laser physics.

11.
Phys Rev Lett ; 107(19): 195003, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22181615

ABSTRACT

It is shown that a vorticity, constructed from the spin field of a quantum spinning plasma, combines with the classical generalized vorticity (representing the magnetic and the velocity fields) to yield a new grand generalized vorticity that obeys the standard vortex dynamics. Expressions for the quantum or spin vorticity and for the resulting generalized helicity invariant are derived. Reduction of the rather complex spinning quantum system to a well known and highly investigated classical form opens familiar channels for the delineation of physics peculiar to dense plasmas spanning solid state to astrophysical objects. A simple example is worked out to show that the magnetics of a spinning plasma can be much richer than that of the corresponding classical system.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(5 Pt 2): 056405, 2010 May.
Article in English | MEDLINE | ID: mdl-20866342

ABSTRACT

An effective photon mass and equivalent photon charge are calculated for plasmas with finite temperature, by using a second covariant quantization of the electromagnetic field, which is based on a nonlinear magnetofluid unification field formalism. Relativistic effects are considered both in the fluid bulk motion and in the thermal motion. The effective relativistic photon mass is found for transverse and longitudinal photons, while the equivalent relativistic photon charge is obtained for purely transverse photons. Both quantum quantities are the relativistic generalization, at finite temperature, of previous results [Mendonça, et al., Phys. Rev. E 62, 2989 (2000)]. The dependence with temperature is studied in both cases.

13.
J Phys Chem A ; 114(27): 7353-8, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20557057

ABSTRACT

When the target is in the solid state, most infrared spectral features are manifestly asymmetric; hence, a line shape function well-grounded in theory is necessary to ascertain the net energy taken by the associated electronic transition. The main sources for spectral line broadening, asymmetry, and shift, no matter the transferred energy, are multiphonon events involving the acoustic vibrational modes. A simple closed-form mathematical expression for the phonon-broadened lineshapes, shown to be valid at low temperatures, and linewidths on the order of the Debye energy of the solid or smaller, giving remarkable agreement with experiment is studied in connection with its utility for analyzing infrared spectral features.

SELECTION OF CITATIONS
SEARCH DETAIL
...