Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850609

ABSTRACT

Molecularly imprinted polymers have been used for the creation of an electrochemical sensor for the detection of sucrose, which are modified by using functionalized graphene (fG). Using AIBN as the free radical initiator and sucrose as the template, imprinted polymers are synthesized. The monomer, 4,4'-diisocyanatodiphenylmethane (DPDI), has both proton donor groups (N-H or O-H) and lone-pair donor groups (C=O). By creating H-bonds with electron donor groups (C=O), the proton donor group in this polymer may interact with the sugar molecule serving as its template. The sensor signals have improved as a result of the interaction between the monomer and the template. Thermogravimetric and differential thermal analysis (TGA/DTA) curves, scanning electron microscopy (SEM), and FT-IR spectroscopy have been employed to characterize the fabricated receptors. The fabricated sensor has exhibited a limit of detection of 16 ppb for the target analyte that is highly sensitive, linear, reversible, regenerative, and selective. Moreover, the sensor's stability, reproducibility, and reusability have been evaluated for six months, following the device's manufacturing, and the results revealed similar responses with the percentage error of less than 1%. Most importantly, this sensor has demonstrated a quick response time, which is very sensitive, stable, and selective.

2.
Appl Biochem Biotechnol ; 189(4): 1156-1166, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31201600

ABSTRACT

A highly sensitive, selective, reversible, and reusable glucose sensor is developed by using molecularly imprinted polymer-based artificial receptors onto interdigital transducer. Sensor receptors were synthesized through bulk imprinting technology by using styrene as monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, and AIBN as free radical initiator. Topography of the synthesized receptors was investigated by scanning electron microscopy (SEM). Fabricated sensor showed concentration-dependent linear and reversible response with lower limit of detection of 30 ppb and upper limit of detection ~ 500 ppm. Furthermore, newly fabricated sensor is highly selective towards its analyte of interest in the presence of other competing agents, and the regeneration of sensor response has been assessed with the percentage error of less than 2% under the period of 1 year at room temperature and pressure conditions. The reported sensor may have potential technological applications in the field of medical diagnostics, food, and pharmaceutical industry.


Subject(s)
Biosensing Techniques , Glucose/analysis , Methacrylates/chemistry , Molecular Imprinting , Styrene/chemistry
3.
Chem Cent J ; 10: 5, 2016.
Article in English | MEDLINE | ID: mdl-26848308

ABSTRACT

BACKGROUND: Carica papaya is a well known medicinal plant used in the West and Asian countries to cope several diseases. Patients were advised to eat papaya fruit frequently during dengue fever epidemic in Pakistan by physicians. This study was conducted to establish Polyphenols, flavonoids and antioxidant potential profile of extracts of all major parts of the C. papaya with seven major solvents i.e. water, ethanol, methanol, n-butanol, dichloromethane, ethyl acetate, and n-hexane. RESULTS: TPC, TFC, antioxidant and antibacterial potential were determined using different aqueous and organic solvents in addition to the determination of trace element in leaves, pulp and peel of C. papaya. Total soluble phenolics and flavonoids were found in promising quantity (≈66 mg GAE/g) especially in case of methanol and ethanol extracts. Antioxidant activity using DPPH free radical scavenging assay indicated leaves, bark, roots and pulp extracts showed >75.0 % scavenging potential while leaves and pulp showed 84.9 and 80.9 % inhibition of peroxidation, respectively. Reducing power assay showed leaves, pulp and roots extracts active to reduce Fe(3+) to Fe(2+) ions. The antibacterial study showed pulp extract is the best to cope infectious action of bacteria. CONCLUSION: This study was conducted to test the medicinal profile of all parts of C. papaya by extracting secondary metabolites with organic and aqueous solvents. Ethanol and methanol both were found to be the best solvents of choice to extract natural products to get maximum medicinal benefits and could be used to medicinal formulation against different infectious diseases.Graphical abstractMedicinal evaluation of different parts of C. papaya.

SELECTION OF CITATIONS
SEARCH DETAIL
...