Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 8(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36294679

ABSTRACT

Metarhizium anisopliae infects and kills a large range of insects and is a promising biocontrol agent to manage soil insects, such as wireworm in sweetpotato. The presence of other soil microbes, which exhibit competitive fungistasis, may inhibit the establishment of M. anisopliae in soil. Microbially depleted soil, for example, sterilized soil, has been shown to improve the resporulation of the fungus from nutrient-fortified M. anisopliae. Prior to planting, sweetpotato plant beds can be disinfected with fumigants, such as Metham®, to control soil-borne pests and weeds. Metham® is a broad-spectrum soil microbial suppressant; however, its effect on Metarhizium spp. is unclear. In the research presented here, fungal resporulation was examined in Metham®-fumigated soil and the infectivity of the resulting granule sporulation was evaluated on mealworm, as a proxy for wireworm. The fungal granules grown on different soil treatments (fumigated, field and pasteurized soil) resporulated profusely (for example, 4.14 × 107 (±2.17 × 106) conidia per granule on fumigated soil), but the resporulation was not significantly different among the three soil treatments. However, the conidial germination of the resporulated granules on fumigated soil was >80%, which was significantly higher than those on pasteurized soil or field soil. The resporulated fungal granules were highly infective, causing 100% insect mortality 9 days after the inoculation, regardless of soil treatments. The results from this research show that the fungal granules applied to soils could be an infective inoculant in sweetpotato fields in conjunction with soil fumigation. Additional field studies are required to validate these results and to demonstrate integration with current farming practices.

2.
Genome Biol Evol ; 13(8)2021 08 03.
Article in English | MEDLINE | ID: mdl-34363471

ABSTRACT

Powdery mildews are among the most important plant pathogens worldwide, which are often attacked in the field by mycoparasitic fungi belonging to the genus Ampelomyces. The taxonomy of the genus Ampelomyces is unresolved, but well-supported molecular operational taxonomic units were repeatedly defined suggesting that the genus may include at least four to seven species. Some Ampelomyces strains were commercialized as biocontrol agents of crop pathogenic powdery mildews. However, the genomic mechanisms underlying their mycoparasitism are still poorly understood. To date, the draft genome of a single Ampelomyces strain, designated as HMLAC 05119, has been released. We report a high-quality, annotated hybrid draft genome assembly of A. quisqualis strain BRIP 72107, which, based on phylogenetic analyses, is not conspecific with HMLAC 05119. The constructed genome is 40.38 Mb in size, consisting of 24 scaffolds with an N50 of 2.99 Mb and 96.2% completeness. Our analyses revealed "bipartite" structure of Ampelomyces genomes, where GC-balanced genomic regions are interspersed by longer or shorter stretches of AT-rich regions. This is also a hallmark of many plant pathogenic fungi and provides further evidence for evolutionary affinity of Ampelomyces species to plant pathogenic fungi. The high-quality genome and annotation produced here provide an important resource for future genomic studies of mycoparasitisim to decipher molecular mechanisms underlying biocontrol processes and natural tritrophic interactions.


Subject(s)
Ascomycota , Plant Diseases , Ascomycota/genetics , Phylogeny , Plant Diseases/microbiology , Plants/microbiology
3.
Sci Rep ; 11(1): 4871, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649415

ABSTRACT

Fertilisers are essential in modern agriculture to enhance plant growth, crop production and product quality. Recent research has focused on the development of delivery systems designed to prolong fertiliser release. This study introduces a new technology to encapsulate and release molecules of fertilisers by using multi-layered electrospun nanofibre as a carrier. Single-layer poly L-lactic acid (PLLA) nanofibres loaded with urea were fabricated using electrospinning. Triple-layer nanofibrous structures were produced by electrospinning polyhydroxybutyrate (PHB) nanofibres as external layers with PLLA nanofibres impregnated with urea fertiliser as the middle layer. Scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR) were employed to characterize the morphology of electrospun nanofibres. Urea release dynamic was analysed using a total nitrogen instrument (TNM-1). The results indicated that triple-layered urea-impregnated nanofibrous structures led to lower initial rate of nitrogen release and slower release rate of cumulative nitrogen which extended for more than three months. It is concluded that triple-layer nanofibrous structures have the potential for slow release delivery of fertilisers.

4.
Phytopathology ; 111(10): 1751-1757, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33620235

ABSTRACT

The causal agent of maize common rust (CR), Puccinia sorghi, has increased in incidence and severity in Australia in recent years, prompting the assessment of sources of resistance and a preliminary survey of the diversity of P. sorghi populations. The maize commercial hybrids tested carried no resistance to 14 isolates of P. sorghi and had infection types comparable with that of a susceptible check. The resistance gene Rp1_D that remained effective in the United States for 35 years was ineffective against 7 of the 14 isolates. Maize lines carrying known "resistance to Puccinia" (Rp) genes were inoculated with the five isolates considered most diverse based on year of collection (2018 or 2019), location (Queensland or Victoria), and host from which they were isolated (maize or sweet corn). Lines carrying the resistance genes RpG, Rp5, Rp1_E, Rp1_I, Rp1_L, RpGDJ, RpGJF, and Rp5GCJ were resistant to all five isolates and to isolates collected in many agroecological regions. These lines were recommended as donors of effective resistance for maize breeding programs in Australia. Lines carrying no known resistance or resistance genes Rp8_A, Rp8_B, Rp1_J, Rp1_M, Rp7, and Rpp9 (conferring resistance to P. polysora) were susceptible to all five isolates. Differential lines carrying resistance genes Rp1_B, Rp1_C, Rp1_D, Rp1_F, Rp1_K, Rp3_D, or Rp4_A were either resistant or susceptible depending upon the isolate used, showing that the isolates varied in virulence for these genes. Urediniospore production was reduced on adult compared with juvenile plants, presumably due to changes in plant physiology associated with age or the presence of adult plant resistance.


Subject(s)
Puccinia , Zea mays , Plant Breeding , Plant Diseases , Victoria
5.
Sci Rep ; 11(1): 2188, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500474

ABSTRACT

Kuschelorhynchus macadamiae is a major pest of macadamias in Australia, causing yield losses of up to 15%. Our previous studies have shown the weevil is susceptible to Beauveria bassiana and Metarhizium anisopliae. The aim of this study was to investigate horizontal transmission of both fungal species to healthy weevils from both infected adults and weevil cadavers. In a confined environment the mortality of healthy adults caused by the transmission of conidia from live fungus-infected adults was < 50%. Under similar experimental conditions, the mortality of healthy adults reached 100% when exposed to conidiated cadavers. However, when conidiated cadavers were used in more spacious environments (insect cages), the mortality of adults was < 80%. Using scanning electron microscopy, it was observed that all healthy adults had conidia attached to all external parts of the body. This suggests that although the conidia were readily transferred to the adults, the lower mortality in the larger insect cages could be the result of an unfavourable environmental factor such as low humidity. The presence of conidia attached to all the adults indicated that they did not show any discriminatory behaviour such as avoidance of conidiated cadavers infected by these two fungal species. The results from this study show that there is potential for enhanced control of adult K. macadamiae via transmission from either fungus-infected adults or conidiated cadavers and this could strengthen sustainable pest management in macadamias.


Subject(s)
Aging/physiology , Beauveria/physiology , Metarhizium/physiology , Spores, Fungal/physiology , Weevils/microbiology , Animals , Biological Assay , Cadaver , Weevils/anatomy & histology , Weevils/ultrastructure
6.
Pest Manag Sci ; 77(2): 709-718, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32865346

ABSTRACT

BACKGROUND: Integrating fungal biocontrol agents into crop protection programs dominated by synthetic pesticides is an important first step towards developing an integrated pest management (IPM) program; however, their successful integration relies on an understanding of how their performance may be impacted by the remaining agrochemicals deployed for managing other pests and diseases. In this study we tested 10 formulated pesticides used in macadamia production at different concentrations to determine their effects on the germination, mycelial growth and sporulation of Metarhizium anisopliae and Beauveria bassiana in vitro. Further tests with laboratory-grade actives of the noncompatible pesticides were conducted to determine whether any antagonistic effects were caused by the active constituent or by formulation additives. RESULTS: At their registered concentrations, formulated trichlorfon, acephate and indoxacarb were compatible with M. anisopliae, whereas B. bassiana showed compatibility with formulated trichlorfon, acephate, indoxacarb, sulfoxaflor and spinetoram. Bioassays using laboratory-grade active constituents indicated that the adverse impact of formulated beta-cyfluthrin on both fungal species and that of formulated methidathion on B. bassiana is probably due to components of the emulsifiable concentrate formulations rather than their active constituents. Diazinon was the only insecticidal active that showed high toxicity to both fungal species. The two fungicides, carbendazim and pyraclostrobin, were toxic to both fungal species at all tested concentrations. CONCLUSION: Our results identify which pesticides used on macadamias in Australia are compatible and incompatible with entomopathogenic fungi. Future studies on pesticide degradation rates will help define the spray intervals required to eliminate these adverse effects.


Subject(s)
Beauveria , Fungicides, Industrial , Insecticides , Metarhizium , Australia , Macadamia , Pest Control, Biological
7.
Insects ; 11(10)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992798

ABSTRACT

Weevils are significant pests of horticultural crops and are largely managed with insecticides. In response to concerns about negative impacts of synthetic insecticides on humans and the environment, entomopathogenic fungi (EPF) have been developed as an alternative method of control, and as such appear to be "ready-made" components of integrated pest management (IPM) programs. As the success of pest control requires a thorough knowledge of the biology of the pests, this review summarises our current knowledge of weevil biology on nut trees, fruit crops, plant storage roots, and palm trees. In addition, three groups of life cycles are defined based on weevil developmental habitats, and together with information from studies of EPF activity on these groups, we discuss the tactics for integrating EPF into IPM programs. Finally, we highlight the gaps in the research required to optimise the performance of EPF and provide recommendations for the improvement of EPF efficacy for the management of key weevils of horticultural crops.

8.
J Invertebr Pathol ; 174: 107437, 2020 07.
Article in English | MEDLINE | ID: mdl-32593532

ABSTRACT

Macadamia seed weevil, Kuschelorhynchus macadamiae Jennings and Oberprieler, is a major pest of macadamia in eastern Australia, causing yield losses of up to 15%. Current control methods involve two applications of acephate per season but more recently have moved to a single application of indoxacarb, combined with the collection and destruction of fallen nuts that contain developing larvae. As a first step towards reducing the dependence of the industry on synthetic insecticides, we tested six isolates of M. anisopliae, six isolates of B. bassiana and one commercial B. bassiana product (Velifer® biological insecticide) against adult macadamia seed weevil under laboratory conditions. All isolates were pathogenic against adult weevils with M. anisopliae accession ECS1/BRIP 70272 and B. bassiana accession B27/BRIP 70267 causing 97.5% and 92.5% mortality 12 days after being treated at 1 × 107 conidia/mL. Isolates ECS1/BRIP 70272 and B27/BRIP 70267 had the shortest LT50 values of 5.13 days and 5.37 days respectively. The median lethal concentrations (LC50) for ECS1/BRIP 70272 and B27/BRIP 70267 were 1.48 × 105 and 1.65 × 105 conidia/mL respectively. Results of this study indicate that M. anisopliae accession ECS1/BRIP 70272 and B. bassiana accession B27/BRIP 70267 have considerable potential for K. macadamiae control, and should be developed into biological insecticides for integration into macadamia pest management programs.


Subject(s)
Beauveria/physiology , Biological Control Agents/pharmacology , Metarhizium/physiology , Pest Control, Biological , Weevils/microbiology , Animals , Beauveria/pathogenicity , Female , Macadamia , Male , Metarhizium/pathogenicity , Random Allocation , Seeds , Virulence
9.
Phytopathology ; 110(4): 780-789, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31804903

ABSTRACT

Pseudomonas fuscovaginae, first reported from Japan in 1976, is now present in many agroecological regions around the world; it causes sheath brown rot of rice and is reported as a pathogen of a broad range of hosts. The pathogen can infect rice plants at all stages of growth and is known to cause significant losses due to grain discoloration, poor spike emergence and panicle sterility. Limited information is available on the virulence and mechanisms of pathogenicity for P. fuscovaginae. To address this, an analysis of genomes was conducted, which identified the presence of a gene showing homology to one of the genes contributing to syringopeptin synthetase (sypA) of P. syringae pv. syringae. To study the potential role of this gene in the virulence and pathogenicity of P. fuscovaginae, a site-specific mutation was created. Following inoculation of seeds and plantlets of rice and wheat with P. fuscovaginae wild types and their respective mutants, we demonstrated that the mutation significantly reduced virulence. This was evident on rice and wheat inoculated with mutants causing a significantly higher number of roots, length of roots and seedling height compared with their respective wild types. Characteristic disease symptoms of necrotic lesions were significantly less in rice seedlings infected with bacterial suspensions of mutants indicating a reduction in virulence. Chromatography analysis of bacterial exudates showed suppression of synthesis of metabolites analogous to syringopeptin in the mutants. These data demonstrate that the protein encoded by this sypA homolog gene is a major virulence determinant of P. fuscovaginae.


Subject(s)
Ligases , Pseudomonas , Bacterial Proteins , Japan , Plant Diseases , Pseudomonas syringae , Virulence
10.
Planta ; 250(4): 1033-1050, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31254100

ABSTRACT

MAIN CONCLUSION: Site-specific changes of photosynthesis, a relatively new concept, can be used to improve the productivity of critical food crops to mitigate the foreseen food crisis. Global food security is threatened by an increasing population and the effects of climate change. Large yield improvements were achieved in major cereal crops between the 1950s and 1980s through the Green Revolution. However, we are currently experiencing a significant decline in yield progress. Of the many approaches to improved cereal yields, exploitation of the mode of photosynthesis has been intensely studied. Even though the C4 pathway is considered the most efficient, mainly because of the carbon concentrating mechanisms around the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, which minimize photorespiration, much is still unknown about the specific gene regulation of this mode of photosynthesis. Most of the critical cereal crops, including wheat and rice, are categorized as C3 plants based on the photosynthesis of major photosynthetic organs. However, recent findings raise the possibility of different modes of photosynthesis occurring at different sites in the same plant and/or in plants grown in different habitats. That is, it seems possible that efficient photosynthetic traits may be expressed in specific organs, even though the major photosynthetic pathway is C3. Knowledge of site-specific differences in photosynthesis, coupled with site-specific regulation of gene expression, may therefore hold a potential to enhance the yields of economically important C3 crops.


Subject(s)
Carbon/metabolism , Gene Expression Regulation, Plant , Oryza/physiology , Photosynthesis/genetics , Triticum/physiology , Biological Evolution , Climate Change , Crops, Agricultural , Edible Grain , Genetic Engineering , Genetic Variation , Oryza/genetics , Triticum/genetics
11.
J Invertebr Pathol ; 164: 69-77, 2019 06.
Article in English | MEDLINE | ID: mdl-31078548

ABSTRACT

Entomopathogenic Ascomycetes: Hypocreales fungi occur worldwide in the soil; however, the abundance and distribution of these fungi in a vineyard environment is unknown. A survey of Australian vineyards was carried out in order to isolate and identify entomopathogenic fungi. A total of 240 soil samples were taken from eight vineyards in two states (New South Wales and Victoria). Insect baiting (using Tenebrio molitor) and soil dilution methods were used to isolate Beauveria spp. and Metarhizium spp. from all soil samples. Of the 240 soil samples, 60% contained either Beauveria spp. (26%) or Metarhizium spp. (33%). Species of Beauveria and Metarhizium were identified by sequencing the B locus nuclear intergenic region (Bloc) and elongation factor-1 alpha (EFT1) regions, respectively. Three Beauveria species (B. bassiana, B. australis and B. pseudobassiana) and six Metarhizium species (M. guizhouense, M. robertsii, M. brunneum, M. flavoviride var. pemphigi, M. pingshaense and M. majus) were identified. A new sister clade made up of six isolates was identified within B. australis. Two potentially new phylogenetic species (six isolates each) were found within the B. bassiana clade. This study revealed a diverse community of entomopathogenic fungi in sampled Australian vineyard soils.


Subject(s)
Beauveria/isolation & purification , Farms , Metarhizium/isolation & purification , Soil Microbiology , Animals , Australia , Beauveria/classification , Beauveria/genetics , Biodiversity , DNA, Intergenic/genetics , Genes, Fungal , Hypocreales/classification , Hypocreales/isolation & purification , Insecta/microbiology , Larva/microbiology , Metarhizium/classification , Metarhizium/genetics , Peptide Elongation Factor 1/genetics , Phylogeny
12.
J Invertebr Pathol ; 148: 67-72, 2017 09.
Article in English | MEDLINE | ID: mdl-28596128

ABSTRACT

Metarhizium anisopliae has a wide range of coleopteran hosts, including weevils. Some susceptible insects are known to modify their behavior to prevent infection, typically detecting virulent strains by olfaction, and avoiding physical contact with sources of infection. Laboratory olfactometer assays were conducted on the sweetpotato weevil Cylas formicarius to test the hypothesis that insects would avoid a more virulent strain of M. anisopliae when presented with a strain of low virulence or an untreated control. When adult weevils were allowed to choose between paired test arenas containing sweetpotato roots and M. anisopliae isolates on agar cores, weevils avoided arenas with the highly virulent isolate QS155, showing a preference for either roots with uninoculated agar cores or cores with the low virulence isolate QS002-3. When roots or whole sweetpotato plants were inoculated with M. anisopliae, the preferences of weevils remained broadly similar; weevils were repelled by the highly virulent isolate QS155 when tested against either QS002-3 or uninoculated roots and plants, however weevils were not repelled by the low virulence isolate QS002-3 tested against uninoculated controls. When single-sex groups of weevils were tested separately in the olfactometer using uninoculated whole plants and plants treated with isolate QS155, males and females responded similarly and statistically identical preferences were found for the untreated plants. When weevils were released singly at different times of the day the response time for males was significantly shorter in the afternoon compared to the morning. Males were always significantly faster to respond to olfactory stimuli than females. Understanding factors that may lead to avoidance of virulent M. anisopliae strains by C. formicarius will be an essential part of developing an 'attract-and-infect' strategy for the management of C. formicarius.


Subject(s)
Behavior, Animal/physiology , Host-Parasite Interactions/physiology , Ipomoea batatas/microbiology , Metarhizium , Weevils/physiology , Animals , Female , Male
13.
Front Plant Sci ; 7: 1521, 2016.
Article in English | MEDLINE | ID: mdl-27833616

ABSTRACT

The recent discovery of Bogia coconut syndrome in Papua New Guinea (PNG) is the first report of a lethal yellowing disease (LYD) in Oceania. Numerous outbreaks of LYDs of coconut have been recorded in the Caribbean and Africa since the late Nineteenth century and have caused the death of millions of palms across several continents during the Twentieth century. Despite the severity of economic losses, it was only in the 1970s that the causes of LYDs were identified as phytoplasmas, a group of insect-transmitted bacteria associated with diseases in many other economically important crop species. Since the development of polymerase chain reaction (PCR) technology, knowledge of LYDs epidemiology, ecology and vectors has grown rapidly. There is no economically viable treatment for LYDs and vector-based management is hampered by the fact that vectors have been positively identified in very few cases despite many attempted transmission trials. Some varieties and hybrids of coconut palm are known to be less susceptible to LYD but none are completely resistant. Optimal and current management of LYD is through strict quarantine, prompt detection and destruction of symptomatic palms, and replanting with less susceptible varieties or crop species. Advances in technology such as loop mediated isothermal amplification (LAMP) for detection and tracking of phytoplasma DNA in plants and insects, remote sensing for identifying symptomatic palms, and the advent of clustered regularly interspaced short palindromic repeats (CRISPR)-based tools for gene editing and plant breeding are likely to allow rapid progress in taxonomy as well as understanding and managing LYD phytoplasma pathosystems.

14.
Sci Rep ; 6: 35801, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27786249

ABSTRACT

Phytoplasmas are insect vectored mollicutes responsible for disease in many economically important crops. Determining which insect species are vectors of a given phytoplasma is important for managing disease but is methodologically challenging because disease-free plants need to be exposed to large numbers of insects, often over many months. A relatively new method to detect likely transmission involves molecular testing for phytoplasma DNA in sucrose solution that insects have fed upon. In this study we combined this feeding medium method with a loop-mediated isothermal amplification (LAMP) assay to study 627 insect specimens of 11 Hemiptera taxa sampled from sites in Papua New Guinea affected by Bogia coconut syndrome (BCS). The LAMP assay detected phytoplasma DNA from the feeding solution and head tissue of insects from six taxa belonging to four families: Derbidae, Lophopidae, Flatidae and Ricaniidae. Two other taxa yielded positives only from the heads and the remainder tested negative. These results demonstrate the utility of combining single-insect feeding medium tests with LAMP assays to identify putative vectors that can be the subject of transmission tests and to better understand phytoplasma pathosystems.


Subject(s)
Hemiptera/genetics , Insect Vectors/genetics , Nucleic Acid Amplification Techniques/methods , Plant Diseases/microbiology , Animals , Cocos/microbiology , Crops, Agricultural , Hemiptera/microbiology , Limit of Detection , Papua New Guinea , Phytoplasma/pathogenicity , Polymerase Chain Reaction/methods
15.
BMC Microbiol ; 14: 274, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25394860

ABSTRACT

BACKGROUND: Pseudomonas fuscovaginae (Pfv) is an emerging plant pathogen of rice and also of other gramineae plants. It causes sheath brown rot disease in rice with symptoms that are characterized by brown lesions on the flag leaf sheath, grain discoloration and sterility. It was first isolated as a high altitude pathogen in Japan and has since been reported in several countries throughout the world. Pfv is a broad host range pathogen and very little is known about its virulence mechanisms. RESULTS: An in planta screen of 1000 random independent Tn5 genomic mutants resulted in the isolation of nine mutants which showed altered virulence. Some of these isolates are mutated for functions which are known to be virulence associated factors in other phytopathogenic bacteria (eg. pil gene, phytotoxins and T6SS) and others might represent novel virulence loci. CONCLUSIONS: Being an emerging pathogen worldwide, the broad host range pathogen Pfv has not yet been studied for its virulence functions. The roles of the nine loci identified in the in planta screen are discussed in relation to pathogenicity of Pfv. In summary, this article reports a first study on the virulence of this pathogen involving in planta screening studies and suggests the presence of several virulence features with known and novel functions in the Pseudomonas group of bacteria.


Subject(s)
Plant Diseases/microbiology , Poaceae/microbiology , Pseudomonas/growth & development , Pseudomonas/genetics , DNA Transposable Elements , Gene Knockout Techniques , Japan , Mutagenesis, Insertional , Pseudomonas/pathogenicity , Virulence
16.
BMC Genomics ; 15: 660, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25102932

ABSTRACT

BACKGROUND: Metarhizium anisopliae is an important fungal biocontrol agent of insect pests of agricultural crops. Genomics can aid the successful commercialization of biopesticides by identification of key genes differentiating closely related species, selection of virulent microbial isolates which are amenable to industrial scale production and formulation and through the reduction of phenotypic variability. The genome of Metarhizium isolate ARSEF23 was recently published as a model for M. anisopliae, however phylogenetic analysis has since re-classified this isolate as M. robertsii. We present a new annotated genome sequence of M. anisopliae (isolate Ma69) and whole genome comparison to M. robertsii (ARSEF23) and M. acridum (CQMa 102). RESULTS: Whole genome analysis of M. anisopliae indicates significant macrosynteny with M. robertsii but with some large genomic inversions. In comparison to M. acridum, the genome of M. anisopliae shares lower sequence homology. While alignments overall are co-linear, the genome of M. acridum is not contiguous enough to conclusively observe macrosynteny. Mating type gene analysis revealed both MAT1-1 and MAT1-2 genes present in M. anisopliae suggesting putative homothallism, despite having no known teleomorph, in contrast with the putatively heterothallic M. acridum isolate CQMa 102 (MAT1-2) and M. robertsii isolate ARSEF23 (altered MAT1-1). Repetitive DNA and RIP analysis revealed M. acridum to have twice the repetitive content of the other two species and M. anisopliae to be five times more RIP affected than M. robertsii. We also present an initial bioinformatic survey of candidate pathogenicity genes in M. anisopliae. CONCLUSIONS: The annotated genome of M. anisopliae is an important resource for the identification of virulence genes specific to M. anisopliae and development of species- and strain- specific assays. New insight into the possibility of homothallism and RIP affectedness has important implications for the development of M. anisopliae as a biopesticide as it may indicate the potential for greater inherent diversity in this species than the other species. This could present opportunities to select isolates with unique combinations of pathogenicity factors, or it may point to instability in the species, a negative attribute in a biopesticide.


Subject(s)
Genomics , Metarhizium/genetics , Pest Control, Biological , Amino Acid Sequence , Cell Membrane/metabolism , DNA Transposable Elements/genetics , DNA, Fungal/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Metarhizium/cytology , Metarhizium/physiology , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Point Mutation , Repetitive Sequences, Nucleic Acid , Reproducibility of Results , Sequence Analysis , Sequence Homology, Nucleic Acid , Species Specificity , Synteny , Transcription, Genetic
17.
Breed Sci ; 64(1): 83-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24987293

ABSTRACT

Phomopsis blight in Lupinus albus is caused by a fungal pathogen, Diaporthe toxica. It can invade all plant parts, leading to plant material becoming toxic to grazing animals, and potentially resulting in lupinosis. Identifying sources of resistance and breeding for resistance remains the best strategy for controlling Phomopsis and reducing lupinosis risks. However, loci associated with resistance to Phomopsis blight have not yet been identified. In this study, quantitative trait locus (QTL) analysis identified genomic regions associated with resistance to Phomopsis pod blight (PPB) using a linkage map of L. albus constructed previously from an F8 recombinant inbred line population derived from a cross between Kiev-Mutant (susceptible to PPB) and P27174 (resistant to PPB). Phenotyping was undertaken using a detached pod assay. In total, we identified eight QTLs for resistance to PPB on linkage group (LG) 3, LG6, LG10, LG12, LG17 and LG27 from different phenotyping environments. However, at least one QTL, QTL-5 on LG10 was consistently detected in both phenotyping environments and accounted for up to 28.2% of the total phenotypic variance. The results of this study showed that the QTL-2 on LG3 interacts epistatically with QTL-5 and QTL-6, which map on LG10 and LG12, respectively.

18.
Plant Dis ; 98(7): 909-915, 2014 Jul.
Article in English | MEDLINE | ID: mdl-30708849

ABSTRACT

The vast amount of data available through next-generation sequencing technology is facilitating the design of diagnostic marker systems. This study reports the use of draft genome sequences from the bacterial plant pathogen Pseudomonas fuscovaginae, the cause of sheath brown rot of rice, to describe the genetic diversity within a worldwide collection of strains representing the species. Based on a comparative analysis with the draft sequences, primers for a loop-mediated isothermal amplification (LAMP) assay were developed to identify P. fuscovaginae. The assay reported here reliably differentiated strains of P. fuscovaginae isolated from rice from a range of other bacteria that are commonly isolated from rice and other plants using a primer combination designated Pf8. The LAMP assay identified P. fuscovaginae purified DNA, live or heat-killed cells from pure cultures, and detected the bacterium in extracts or exudates from infected host plant material. The P. fuscovaginae LAMP assay is a suitable diagnostic tool for the glasshouse and laboratory and could be further developed for in-field surveys.

19.
Breed Sci ; 63(3): 292-300, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24273424

ABSTRACT

We report the development of a Diversity Arrays Technology (DArT) marker panel and its utilisation in the development of an integrated genetic linkage map of white lupin (Lupinus albus L.) using an F8 recombinant inbred line population derived from Kiev Mutant/P27174. One hundred and thirty-six DArT markers were merged into the first genetic linkage map composed of 220 amplified fragment length polymorphisms (AFLPs) and 105 genic markers. The integrated map consists of 38 linkage groups of 441 markers and spans a total length of 2,169 cM, with an average interval size of 4.6 cM. The DArT markers exhibited good genome coverage and were associated with previously identified genic and AFLP markers linked with quantitative trait loci for anthracnose resistance, flowering time and alkaloid content. The improved genetic linkage map of white lupin will aid in the identification of markers for traits of interest and future syntenic studies.

20.
J Genet ; 90(1): 103-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21677394

ABSTRACT

With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F(2) mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% (P > 0.001) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0 cM and 451.6 cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.


Subject(s)
Cajanus/genetics , Chromosome Mapping , Oligonucleotide Array Sequence Analysis/methods , Chromosomes, Plant/genetics , Genetic Linkage/genetics , Hybridization, Genetic , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...