Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Front Neuroanat ; 16: 915238, 2022.
Article in English | MEDLINE | ID: mdl-35873660

ABSTRACT

Axonal patches are known as the major sites of synaptic connections in the cerebral cortex of higher order mammals. However, the functional role of these patches is highly debated. Patches are formed by populations of nearby neurons in a topographic manner and are recognized as the termination fields of long-distance lateral connections within and between cortical areas. In addition, axons form numerous boutons that lie outside the patches, whose function is also unknown. To better understand the functional roles of these two distinct populations of boutons, we compared individual and collective morphological features of axons within and outside the patches of intra-areal, feedforward, and feedback pathways by way of tract tracing in the somatosensory cortex of New World monkeys. We found that, with the exception of tortuosity, which is an invariant property, bouton spacing and axonal convergence properties differ significantly between axons within patch and no-patch domains. Principal component analyses corroborated the clustering of axons according to patch formation without any additional effect by the type of pathway or laminar distribution. Stepwise logistic regression identified convergence and bouton density as the best predictors of patch formation. These findings support that patches are specific sites of axonal convergence that promote the synchronous activity of neuronal populations. On the other hand, no-patch domains could form a neuroanatomical substrate to diversify the responses of cortical neurons.

2.
Elife ; 102021 02 15.
Article in English | MEDLINE | ID: mdl-33587033

ABSTRACT

Dorsal Excitor motor neuron DE-3 in the medicinal leech plays three very different dynamical roles in three different behaviors. Without rewiring its anatomical connectivity, how can a motor neuron dynamically switch roles to play appropriate roles in various behaviors? We previously used voltage-sensitive dye imaging to record from DE-3 and most other neurons in the leech segmental ganglion during (fictive) swimming, crawling, and local-bend escape (Tomina and Wagenaar, 2017). Here, we repeated that experiment, then re-imaged the same ganglion using serial blockface electron microscopy and traced DE-3's processes. Further, we traced back the processes of DE-3's presynaptic partners to their respective somata. This allowed us to analyze the relationship between circuit anatomy and the activity patterns it sustains. We found that input synapses important for all the behaviors were widely distributed over DE-3's branches, yet that functional clusters were different during (fictive) swimming vs. crawling.


Subject(s)
Leeches/physiology , Motor Neurons/physiology , Animals , Behavior, Animal , Ganglia/chemistry , Ganglia/physiology , Leeches/anatomy & histology , Leeches/chemistry , Leeches/cytology , Locomotion , Staining and Labeling
3.
Eur J Neurosci ; 52(9): 4037-4056, 2020 11.
Article in English | MEDLINE | ID: mdl-32654301

ABSTRACT

In cortical circuitry, synaptic communication across areas is based on two types of axon terminals, small and large, with modulatory and driving roles, respectively. In contrast, it is not known whether similar synaptic specializations exist for intra-areal projections. Using anterograde tracing and three-dimensional reconstruction by electron microscopy (3D-EM), we asked whether large boutons form synapses in the circuit of somatosensory cortical areas 3b and 1. In contrast to observations in macaque visual cortex, light microscopy showed both small and large boutons not only in inter-areal pathways, but also in long-distance intrinsic connections. 3D-EM showed that correlation of surface and volume provides a powerful tool for classifying cortical endings. Principal component analysis supported this observation and highlighted the significance of the size of mitochondria as a distinguishing feature of bouton type. The larger mitochondrion and higher degree of perforated postsynaptic density associated with large rather than to small boutons support the driver-like function of large boutons. In contrast to bouton size and complexity, the size of the postsynaptic density appeared invariant across the bouton types. Comparative studies in human supported that size is a major distinguishing factor of bouton type in the cerebral cortex. In conclusion, the driver-like function of the large endings could facilitate fast dissemination of tactile information within the intrinsic and inter-areal circuitry of areas 3b and 1.


Subject(s)
Cerebral Cortex , Synapses , Animals , Communication , Macaca , Microscopy, Electron
4.
Orv Hetil ; 157(33): 1320-5, 2016 Aug.
Article in Hungarian | MEDLINE | ID: mdl-27523315

ABSTRACT

INTRODUCTION: The close functional relationship between areas 3b and 1 of the somatosensory cortex is based on their reciprocal connections indicating that tactile sensation depends on the interaction of these two areas. AIM: The aim of the authors was to explore this neuronal circuit at the level of the distal finger pad representation. METHOD: The study was made by bidirectional tract tracing aided by neurophysiological mapping in squirrel monkeys (Saimiri sciureus). RESULTS: Inter-areal connections between the two areas preferred the homologues representations. However, intra-areal connections were formed between the neighboring finger pad representations supporting the physiological observations. Interestingly, the size of the local input area of the injected cortical micro-region, which differed in the two areas, represented the same skin area. CONCLUSIONS: The authors propose that intra-areal connections are important in integrating information across fingers, while inter-areal connections are important in maintaining input localization during hand movement. Orv. Hetil., 2016, 157(33), 1320-1325.


Subject(s)
Brain Mapping , Fingers , Neurons/physiology , Somatosensory Cortex/physiology , Touch , Animals , Hand , Humans , Neuronal Plasticity , Saimiri
5.
J Comp Neurol ; 522(8): 1769-85, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24214200

ABSTRACT

Converging evidence shows that interaction of digit-specific input, which is required to form global tactile percepts, begins as early as area 3b in the primary somatosensory cortex with the involvement of intrinsic lateral connections. How tactile processing is further elaborated in area 1, the next stage of the somatosensory cortical hierarchy, is less understood. This question was investigated by studying the tangential distribution of intrinsic and interareal connections of finger representations of area 1. Retrogradely labeled cell densities and anterogradely labeled fibers and terminal patches were plotted and quantified with respect to the hand representation by combining tract tracing with electrophysiological mapping and intrinsic signal optical imaging in somatosensory areas. Intrinsic connections of distal finger pad representations of area 1 spanned the representation of multiple digits indicating strong cross-digit connectivity. Area 1 distal finger pad regions also established high-density connections with homotopic regions of areas 3b and 2. Although similar to area 3b, connections of area 1 distributed more widely and covered a larger somatotopic representation including more proximal parts of the finger representations. The lateral connectivity pattern of area 1 is a suitable anatomical substrate of the emergence of multifinger receptive fields, complex feature selectivity, and invariant stimulus properties of the neurons.


Subject(s)
Brain Mapping/methods , Fingers/physiology , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Somatosensory Cortex/anatomy & histology , Somatosensory Cortex/physiology , Animals , Female , Male , Physical Stimulation/methods , Saimiri , Touch/physiology
6.
J Comp Neurol ; 521(12): 2798-817, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23436325

ABSTRACT

To understand manual tactile functions in primates, it is essential to explore the interactions between the finger pad representations in somatosensory cortex. To this end, we used optical imaging and electrophysiological mapping to guide neuroanatomical tracer injections into distal digit tip representations of Brodmann area 3b in the squirrel monkey. Retrogradely labeled cell densities and anterogradely labeled fibers and terminal patches in somatosensory areas were plotted and quantified with respect to tangential distribution. Within area 3b, reciprocal patchy distribution of anterograde and retrograde labeling spanned the representation of the distal pad of multiple digits, indicating strong cross-digit connectivity. Inter-areal connections revealed bundles of long-range fibers projecting anteroposteriorly, connecting area 3b with clusters of labeled neurons and terminal axon arborizations in area 1. Inter-areal linkage appeared to be largely confined to the representation of the injected finger. These findings provide the neuroanatomical basis for the interaction between distal finger pad representations observed by recent electrophysiological studies. We propose that intra-areal connectivity may be heavily involved in interdigit integration such as shape discrimination, whereas long-range inter-areal connections may subserve active touch in a digit-specific manner.


Subject(s)
Afferent Pathways/physiology , Brain Mapping , Somatosensory Cortex/anatomy & histology , Somatosensory Cortex/physiology , Touch/physiology , Action Potentials/physiology , Afferent Pathways/anatomy & histology , Animals , Axons/physiology , Biotin/analogs & derivatives , Biotin/metabolism , Dextrans/metabolism , Female , Fingers/innervation , Image Processing, Computer-Assisted , Male , Neuroimaging , Neurons/physiology , Neurons/ultrastructure , Physical Stimulation , Saimiri
7.
Psychoneuroendocrinology ; 33(9): 1198-210, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18656313

ABSTRACT

Neuronal plasticity within the amygdala mediates many behavioral effects of traumatic experience, and this brain region also controls various aspects of social behavior. However, the specific involvement of the amygdala in trauma-induced social deficits has never been systematically investigated. We exposed rats to a single series of electric foot-shocks--a frequently used model of trauma--and studied their behavior in the social avoidance and psychosocial stimulation tests (non-contact versions of the social interaction test) at different time intervals. Social interaction-induced neuronal activation patterns were studied in the prefrontal cortex (orbitofrontal and medial), amygdala (central, medial, and basolateral), dorsal raphe and locus coeruleus. Shock exposure markedly inhibited social behavior in both tests. The effect lasted at least 4 weeks, and amplified over time. As shown by c-Fos immunocytochemistry, social interactions activated all the investigated brain areas. Traumatic experience exacerbated this activation in the central and basolateral amygdala, but not in other regions. The tight correlation between the social deficit and amygdala activation patterns suggest that the two phenomena were associated. A real-time PCR study showed that CRF mRNA expression in the amygdala was temporarily reduced 14, but not 1 and 28 days after shock exposure. In contrast, amygdalar NK1 receptor mRNA expression increased throughout. Thus, the trauma-induced social deficits appear to be associated with, and possibly caused by, plastic changes in fear-related amygdala subdivisions.


Subject(s)
Amygdala/physiology , Avoidance Learning/physiology , Prefrontal Cortex/metabolism , Social Behavior , Stress, Psychological/physiopathology , Analysis of Variance , Animals , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Gene Expression Regulation/physiology , Male , Norepinephrine/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/analysis , Rats , Rats, Wistar , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Serotonin/metabolism , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...