Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinform Adv ; 3(1): vbad134, 2023.
Article in English | MEDLINE | ID: mdl-38046099

ABSTRACT

Summary: Protein structures carry signal of common ancestry and can therefore aid in reconstructing their evolutionary histories. To expedite the structure-informed inference process, a web server, Structome, has been developed that allows users to rapidly identify protein structures similar to a query protein and to assemble datasets useful for structure-based phylogenetics. Structome was created by clustering ∼94% of the structures in RCSB PDB using 90% sequence identity and representing each cluster by a centroid structure. Structure similarity between centroid proteins was calculated, and annotations from PDB, SCOP, and CATH were integrated. To illustrate utility, an H3 histone was used as a query, and results show that the protein structures returned by Structome span both sequence and structural diversity of the histone fold. Additionally, the pre-computed nexus-formatted distance matrix, provided by Structome, enables analysis of evolutionary relationships between proteins not identifiable using searches based on sequence similarity alone. Our results demonstrate that, beginning with a single structure, Structome can be used to rapidly generate a dataset of structural neighbours and allows deep evolutionary history of proteins to be studied. Availability and Implementation: Structome is available at: https://structome.bii.a-star.edu.sg.

2.
3.
Structure ; 28(12): 1358-1360.e2, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32783952

ABSTRACT

Peptides comprising D-amino acids have been shown to be resistant to proteolysis. This makes them potential candidates as probes of cellular interactions, notably protein-biomolecule interactions. However, the empirical conversion of the amino acids that constitute a peptide from L-forms to D-forms will result in abrogation of the normal interactions made by the L-amino acids due to side-chain orientation changes that are associated with the changes in chirality. These interactions can be preserved by reversing the sequence of the D-peptide. We present a web server (http://dstabilize.bii.a-star.edu.sg/) that allows users to convert between L-proteins and D-proteins and for sequence reversal of D-peptides, along with the capability of performing other empirical geometric transforms. This resource allows the user to generate structures of interest easily for subsequent in silico processing.


Subject(s)
Sequence Analysis, Protein/methods , Software , Animals , Humans , Isomerism , Protein Stability
4.
Mol Biol Evol ; 37(9): 2711-2726, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32302382

ABSTRACT

For evaluating the deepest evolutionary relationships among proteins, sequence similarity is too low for application of sequence-based homology search or phylogenetic methods. In such cases, comparison of protein structures, which are often better conserved than sequences, may provide an alternative means of uncovering deep evolutionary signal. Although major protein structure databases such as SCOP and CATH hierarchically group protein structures, they do not describe the specific evolutionary relationships within a hierarchical level. Structural phylogenies have the potential to fill this gap. However, it is difficult to assess evolutionary relationships derived from structural phylogenies without some means of assessing confidence in such trees. We therefore address two shortcomings in the application of structural data to deep phylogeny. First, we examine whether phylogenies derived from pairwise structural comparisons are sensitive to differences in protein length and shape. We find that structural phylogenetics is best employed where structures have very similar lengths, and that shape fluctuations generated during molecular dynamics simulations impact pairwise comparisons, but not so drastically as to eliminate evolutionary signal. Second, we address the absence of statistical support for structural phylogeny. We present a method for assessing confidence in a structural phylogeny using shape fluctuations generated via molecular dynamics or Monte Carlo simulations of proteins. Our approach will aid the evolutionary reconstruction of relationships across structurally defined protein superfamilies. With the Protein Data Bank now containing in excess of 158,000 entries (December 2019), we predict that structural phylogenetics will become a useful tool for ordering the protein universe.


Subject(s)
Evolution, Molecular , Genetic Techniques , Phylogeny , Protein Structural Elements/genetics , Molecular Dynamics Simulation , Monte Carlo Method
5.
Gene Ther ; 17(1): 132-40, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19759562

ABSTRACT

We have earlier shown that antisense morpholino oligomers are able to restore dystrophin expression by systemic delivery in body-wide skeletal muscles of dystrophic mdx mice. However, the levels of dystrophin expression vary considerably and, more importantly, no dystrophin expression has been achieved in cardiac muscle. In this study, we investigate the efficiency of morpholino-induced exon skipping in cardiomyoblasts and myocytes in vitro, and in cardiac muscle in vivo by dose escalation. We showed that morpholino induces targeted exon skipping equally effectively in both skeletal muscle myoblasts and cardiomyoblasts. Effective exon skipping was achieved in cardiomyocytes in culture. In the mdx mice, morpholino rescues dystrophin expression dose dependently in both skeletal and cardiac muscles. Therapeutic levels of dystrophin were achieved in cardiac muscle albeit at higher doses than in skeletal muscles. Up to 50 and 30% normal levels of dystrophin were induced by single systemic delivery of 3 g kg(-1) of morpholino in skeletal and cardiac muscles, respectively. High doses of morpholino treatment reduced the serum levels of creatine kinase without clear toxicity. These findings suggest that effective rescue of dystrophin in cardiac muscles can be achieved by morpholino for the treatment of Duchenne muscular dystrophy.


Subject(s)
Dystrophin/biosynthesis , Genetic Therapy , Morpholines , Muscular Dystrophy, Animal/therapy , Myocardium/metabolism , Transfection , Animals , Cells, Cultured , Creatine Kinase/metabolism , Dose-Response Relationship, Drug , Dystrophin/genetics , Injections, Intramuscular , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Morpholinos , Myoblasts, Skeletal/metabolism , Myocytes, Cardiac/metabolism , Oligonucleotides, Antisense
SELECTION OF CITATIONS
SEARCH DETAIL
...