Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Anal Bioanal Chem ; 416(1): 227-241, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37938411

ABSTRACT

This study aims to investigate the influence of copper(II) ions as a cofactor on the electrochemical performance of a biocomposite consisting of a mini protein mimicking uricase (mp20) and zeolitic immidazolate framework-8 (ZIF-8) for the detection of uric acid. A central composite design (CCD) was utilized to optimize the independent investigation, including pH, deposition potential, and deposition time, while the current response resulting from the electrocatalytic oxidation of uric acid was used as the response. The statistical analysis of variance (ANOVA) showed a good correlation between the experimental and predicted data, with a residual standard error percentage (RSE%) of less than 2% for predicting optimal conditions. The synergistic effect of the nanoporous ZIF-8 host, Cu(II)-activated mp20, and reduced graphene oxide (rGO) layer resulted in a highly sensitive biosensor with a limit of detection (LOD) of 0.21 µM and a reproducibility of the response (RSD = 0.63%). The Cu(II)-activated mp20@ZIF-8/rGO/SPCE was highly selective in the presence of common interferents, and the fabricated layer exhibited remarkable stability with signal changes below 4.15% after 60 days. The biosensor's reliable performance was confirmed through real sample analyses of human serum and urine, with comparable recovery values to conventional HPLC.


Subject(s)
Copper , Urate Oxidase , Humans , Uric Acid/analysis , Reproducibility of Results , Electrochemical Techniques/methods
2.
RSC Adv ; 13(20): 13493-13504, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37152575

ABSTRACT

Lipase has been gaining attention as the recognition element in electrochemical biosensors. Lipase immobilization is important to maintain its stability while providing excellent conductivity. In this study, a lipase electrochemical biosensor immobilized on a copper-centred metal-organic framework integrated with reduced graphene oxide (lipase/rGO/Cu-MOF) was synthesized by a facile method at room temperature. Response surface methodology (RSM) via central composite design (CCD) was used to optimize the synthesis parameters, which are rGO weight, ultrasonication time, and lipase concentration, to maximize the current response for the detection of p-nitrophenyl acetate (p-NPA). The results of the analysis of variance (ANOVA) showed that all three parameters were significant, while the interaction between the ultrasonication time and lipase concentration was the only significant interaction with a p-value of less than 0.05. The optimized electrode with parameters of 1 mg of rGO, 30 min ultrasonication time, and 30 mg mL-1 lipase exhibited the highest current response of 116.93 µA using cyclic voltammetry (CV) and had a residual standard error (RSE) of less than 2% in validation, indicating that the model is suitable to be used. It was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FTIR), where the integration of the composite was observed. Immobilization using ultrasonication altered the lipase's secondary structure, but reduced its unorderly coils. The electrochemical and thermal analysis showed that the combination of Cu-MOF with rGO enhanced the electrochemical conductivity and thermostability.

3.
Polymers (Basel) ; 14(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36433152

ABSTRACT

Tannin-furanic foams were prepared with a good yield using the addition of relatively small proportions of a polyflavonoid tannin extract esterified with either palmitic acid, oleic acid, or lauric acid by its reaction with palmitoyl chloride, oleyl chloride, or lauryl chloride. FTIR analysis allowed us to ascertain the esterification of the tannin, and MALDI-TOF analysis allowed us to identify a number of multi-esterified flavonoid oligomers as well as some linked to residual carbohydrates related to the equally esterified tannin. These foams presented a markedly decreased surface friability or no friability at all, and at densities lower than the standard foam they were compared to. Equally, these experimental foams presented a much-improved water repellence, as indicated by their initial wetting angle, its small variation over time, and its stabilization at a high wetting angle value, while the wetting angle of the standard foam control went to zero very rapidly. This conclusion was supported by the calculation of the total surface energy of their surfaces as well as of their dispersive and polar components.

4.
Nanomaterials (Basel) ; 12(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35808126

ABSTRACT

This work presents the use of encapsulated mini protein 20 mimicking uricase (mp20)-zeolitic imidazolate framework-8 (ZIF-8) as a bioreceptor for the development of a nanozyme-based electrochemical biosensor for uric acid detection. The electrochemical performance of the biofunctionalized mp20@ZIF-8 on the reduced graphene oxide/screen-printed carbon electrode (rGO/SPCE) was investigated by optimizing operating parameters such as pH, deposition potential, and deposition time using a central composite design-response surface methodology (CCD-RSM). The quadratic regression model was developed to correlate the combination of each variable to the oxidation current density as a response. A significant effect on current response was observed under optimized conditions of pH of 7.4 at −0.35 V deposition potential and 56.56 s deposition time, with p < 0.05 for each interacted factor. The obtained coefficient of determination (R2) value of 0.9992 indicated good agreement with the experimental finding. The developed nanozyme biosensor (mp20@ZIF-8/rGO/SPCE) exhibited high selectivity in the presence of the same fold concentration of interfering species with a detection limit of 0.27 µM, over a concentration range of 1 to 34 µM. The practicality of the tailored biosensor in monitoring uric acid in human serum and urine samples was validated with high-performance liquid chromatography (HPLC) and a commercial uric acid meter. Hence, nanozyme-based is a promising platform that offers a rapid, sensitive, selective, and low-cost biosensor for the non-enzymatic detection of uric acid in biological samples.

5.
Molecules ; 27(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35011520

ABSTRACT

Advanced hybrid component development in nanotechnology provides superior functionality in the application of scientific knowledge for the drug delivery industry. The purpose of this paper is to review important nanohybrid perspectives in drug delivery between nanostructured lipid carriers (NLC) and hydrogel systems. The hybrid system may result in the enhancement of each component's synergistic properties in the mechanical strength of the hydrogel and concomitantly decrease aggregation of the NLC. The significant progress in nanostructured lipid carriers-hydrogels is reviewed here, with an emphasis on their preparation, potential applications, advantages, and underlying issues associated with these exciting materials.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems , Lipids/chemistry , Nanogels/chemistry , Nanotechnology , Animals , Chemical Phenomena , Humans , Nanotechnology/methods
6.
Ultrason Sonochem ; 81: 105851, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34864545

ABSTRACT

The optimisation of the Ultrasound-Assisted Extraction (UAE) method was investigated by employing the Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM). The UAE method was based on a simple ultrasound treatment using methanol as the extraction medium to facilitate the cell disruption of Mitragyna speciosa leaves for optimum extraction yield and Total Phenolic Content (TPC). Three different parameters comprising extraction temperature (X1: 25-50 °C), sonication time (X2: 15-50 min), and solvent to solid ratio (X3: 10-30 mL/g), and were selected as the independent variables, while two response variables were selected, namely extraction yield (Y1) and TPC (Y2). Based on the results, the developed quadratic polynomial model correlated with the experimental data is based on the coefficient of determination (R2) of extraction yield (0.9972, p < 0.0001) and TPC (0.9553, p < 0.0001). At 25 °C, 15 min sonication time, and 10 mL/g of solvent to solid ratio, the optimal conditions recorded an extraction yield and TPC of 22.69% and 143.51 mg gallic acid equivalent (GAE)/g, respectively. Furthermore, the actual response and the predicted values of the developed models correlated with each other as the Residual Standard Error (RSE) values were <5%. Meanwhile, the Liquid Chromatography- tandem Mass Spectrometry (LC-MS/MS) was employed to characterise the optimised M. speciosa extract and revealed the presence of major phytochemicals, including catechin, rutin, kaempferol, coumarin, gallic acid, chlorogenic acid, and caffeic acid. These compounds could exhibit certain therapeutic effects, such as anti-inflammatory, antibacterial, and antioxidant. Therefore, the findings in this study supported the suggestion that the various available bioactive compounds besides alkaloids contributed to the bioactive properties in M. speciosa, making it an effective traditional herbal medicine to treat various illnesses.

7.
Article in English | MEDLINE | ID: mdl-33419155

ABSTRACT

Lead sulphide (PbS) modified with calix[6]arene was synthesised as an alternative and regenerative adsorbent for the adsorption of methylene blue (MB) dye. The prepared calix[6]arene-modified PbS was characterised via Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The response surface methodology (RSM) based on the central composite design (CCD) was employed to identify the most significant factors, such as the initial concentration, adsorbent dosage, pH, and temperature, and to optimise the effects of the factors on the adsorptive efficiency as its response. The optimised initial concentration, adsorbent dosage, pH, and temperature were 20.00 mg/L initial concentration, 44.00 mg calix[6]arene-modified PbS, pH 6, and a temperature of 31.00 °C. A good correlation between the values and well-fitted model was observed. The adsorption performance was evaluated based on the percentage removal of MB dye from the water system. The adsorption isotherm best fit the Langmuir isotherm model, and the adsorption rate was followed by a pseudo-second-order kinetic model, a single layer chemical adsorption with a maximum adsorption capacity (qmax) of 5.495 mg/g.


Subject(s)
Methylene Blue , Water Pollutants, Chemical , Adsorption , Calixarenes , Hydrogen-Ion Concentration , Kinetics , Lead , Phenols , Spectroscopy, Fourier Transform Infrared , Sulfides , Thermodynamics
8.
J Enzyme Inhib Med Chem ; 36(1): 109-121, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33249946

ABSTRACT

The inhibition of α-glucosidase and DPP enzymes capable of effectively reducing blood glucose level in the management of type 2 diabetes. The purpose of the present study is to evaluate the inhibitory potential of α-glucosidase and DPP (IV) activity including with the 2-NBDG uptake assay and insulin secretion activities through in vitro studies. The selected of active compounds obtained from the screening of compounds by LC-MS were docked with the targeted enzyme that involved in the mechanism of T2DM. From the results, root extracts displayed a better promising outcome in α-glucosidase (IC50 2.72 ± 0.32) as compared with the fruit extracts (IC50 3.87 ± 0.32). Besides, root extracts also displayed a better activity in the inhibition of DPP (IV), enhance insulin secretion and glucose uptake activity. Molecular docking results revealing that phlorizin binds strongly with α-glucosidase, DPP (IV) and Insulin receptor (IR) enzymes with achieving the lowest binding energy value. The present work suggests several of the compounds have the potential that contribute towards inhibiting α-glucosidase and DPP (IV) and thus effective in lowering post-prandial hyperglycaemia.


Subject(s)
Curculigo/chemistry , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Fruit/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Insulin Secretion , Mice , Molecular Docking Simulation , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rats , Structure-Activity Relationship , alpha-Glucosidases/metabolism
9.
Molecules ; 25(15)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731437

ABSTRACT

The biosynthesis of calcium carbonate (CaCO3) minerals through a metabolic process known as microbially induced calcium carbonate precipitation (MICP) between diverse microorganisms, and organic/inorganic compounds within their immediate microenvironment, gives rise to a cementitious biomaterial that may emerge as a promissory alternative to conventional cement. Among photosynthetic microalgae, Chlorella vulgaris has been identified as one of the species capable of undergoing such activity in nature. In this study, response surface technique was employed to ascertain the optimum condition for the enhancement of biomass and CaCO3 precipitation of C. vulgaris when cultured in Blue-Green (BG)-11 aquaculture medium. Preliminary screening via Plackett-Burman Design showed that sodium nitrate (NaNO3), sodium acetate, and urea have a significant effect on both target responses (p < 0.05). Further refinement was conducted using Box-Behnken Design based on these three factors. The highest production of 1.517 g/L C. vulgaris biomass and 1.143 g/L of CaCO3 precipitates was achieved with a final recipe comprising of 8.74 mM of NaNO3, 61.40 mM of sodium acetate and 0.143 g/L of urea, respectively. Moreover, polymorphism analyses on the collected minerals through morphological examination via scanning electron microscopy and crystallographic elucidation by X-ray diffraction indicated to predominantly calcite crystalline structure.


Subject(s)
Biomass , Biomineralization , Calcium Carbonate/metabolism , Chlorella vulgaris/growth & development , Culture Media/chemistry
10.
Molecules ; 25(11)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521731

ABSTRACT

Actinopyga lecanora (A. lecanora) is classified among the edible species of sea cucumber, known to be rich in protein. Its hydrolysates were reported to contain relatively high antioxidant activity. Antioxidants are one of the essential properties in cosmeceutical products especially to alleviate skin aging. In the present study, pH, reaction temperature, reaction time and enzyme/substrate ratio (E/S) have been identified as the parameters in the papain enzymatic hydrolysis of A. lecanora. The degree of hydrolysis (DH) with antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays were used as the responses in the optimization. Analysis of variance (ANOVA), normal plot of residuals and 3D contour plots were evaluated to study the effects and interactions between parameters. The best conditions selected from the optimization were at pH 5.00, 70 °C of reaction temperature, 9 h of hydrolysis time and 1.00% enzyme/substrate (E/S) ratio, with the hydrolysates having 51.90% of DH, 42.70% of DPPH activity and 109.90 Fe2+µg/mL of FRAP activity. The A. lecanora hydrolysates (ALH) showed a high amount of hydrophobic amino acids (286.40 mg/g sample) that might be responsible for antioxidant and antityrosinase activities. Scanning electron microscopy (SEM) image of ALH shows smooth structures with pores. Antityrosinase activity of ALH exhibited inhibition of 31.50% for L-tyrosine substrate and 25.40% for L-DOPA substrate. This condition suggests that the optimized ALH acquired has the potential to be used as a bioactive ingredient for cosmeceutical applications.


Subject(s)
Antioxidants/pharmacology , Biphenyl Compounds/metabolism , Enzyme Inhibitors/pharmacology , Ferric Compounds/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Picrates/metabolism , Protein Hydrolysates/pharmacology , Sea Cucumbers/chemistry , Animals , Oxidation-Reduction , Papain/metabolism
11.
Molecules ; 25(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512808

ABSTRACT

Tyrosinase inhibitors have become increasingly important targets for hyperpigmentation disease treatment. Kojic monooleate (KMO), synthesized from the esterification of kojic acid and oleic acid, has shown a better depigmenting effect than kojic acid. In this study, the process parameters include the speed of high shear, the time of high shear and the speed of the stirrer in the production of nanoemulsion containing KMO was optimized using Response Surface Methodology (RSM), as well as evaluated in terms of its physicochemical properties, safety and efficacy. The optimized condition for the formulation of KMO nanoemulsion was 8.04 min (time of high shear), 4905.42 rpm (speed of high shear), and 271.77 rpm (speed of stirrer), which resulted in a droplet size of 103.97 nm. An analysis of variance (ANOVA) showed that the fitness of the quadratic polynomial fit the experimental data with large F-values (148.79) and small p-values (p < 0.0001) and an insignificant lack of fit. The optimized nanoemulsion containing KMO with a pH value of 5.75, showed a high conductivity value (3.98 mS/cm), which indicated that the nanoemulsion containing KMO was identified as an oil-in-water type of nanoemulsion. The nanoemulsion remains stable (no phase separation) under a centrifugation test and displays accelerated stability during storage at 4, 25 and 45 °C over 90 days. The cytotoxicity assay showed that the optimized nanoemulsion was less toxic, with a 50% inhibition of cell viability (IC50) > 500 µg/mL, and that it can inhibit 67.12% of tyrosinase activity. This study reveals that KMO is a promising candidate for the development of a safe cosmetic agent to prevent hyperpigmentation.


Subject(s)
Esters/pharmacology , Esters/standards , Fibroblasts/drug effects , Monophenol Monooxygenase/metabolism , Oleic Acid/chemistry , Pyrones/chemistry , Animals , Embryo, Mammalian/drug effects , Embryo, Mammalian/pathology , Emulsions , Esterification , Esters/chemistry , Fibroblasts/pathology , In Vitro Techniques , Mice , Particle Size
12.
Int J Nanomedicine ; 15: 1585-1594, 2020.
Article in English | MEDLINE | ID: mdl-32210553

ABSTRACT

BACKGROUND: Aripiprazole, which is a quinolinone derivative, has been widely used to treat schizophrenia, major depressive disorder, and bipolar disorder. PURPOSE: A Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM) was used purposely to optimize process parameters conditions for formulating nanoemulsion containing aripiprazole using high emulsification methods. METHODS: This design is used to investigate the influences of four independent variables (overhead stirring time (A), shear rate (B), shear time (C), and the cycle of high-pressure homogenizer (D)) on the response variable namely, a droplet size (Y) of nanoemulsion containing aripiprazole. RESULTS: The optimum conditions suggested by the predicted model were: 120 min of overhead stirring time, 15 min of high shear homogenizer time, 4400 rpm of high shear homogenizer rate and 11 cycles of high-pressure homogenizer, giving a desirable droplet size of nanoemulsion containing aripiprazole of 64.52 nm for experimental value and 62.59 nm for predicted value. The analysis of variance (ANOVA) showed the quadratic polynomial fitted the experimental values with F-value (9.53), a low p-value (0.0003) and a non-significant lack of-fit. It proved that the models were adequate to predict the relevance response. The optimized formulation with a viscosity value of 3.72 mPa.s and pH value of 7.4 showed good osmolality value (297 mOsm/kg) and remained stable for three months in three different temperatures (4°C, 25°C, and 45°C). CONCLUSION: This proven that response surface methodology is an efficient tool to produce desirable droplet size of nanoemulsion containing aripiprazole for parenteral delivery application.


Subject(s)
Aripiprazole/chemistry , Emulsions/chemistry , Nanostructures/chemistry , Chemistry, Pharmaceutical/methods , Osmolar Concentration , Solubility , Viscosity
13.
RSC Adv ; 10(71): 43894-43903, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-35519703

ABSTRACT

Nanoemulsions have emerged as novel vehicles for drug delivery that allow sustained or controlled release for topical application. In this study, kojic acid ester-based nanoemulsion (KAE-NA) was analyzed for in vitro permeation evaluation, kinetic release study, in vitro antimicrobial activity and in vivo toxicity profile on embryonic zebrafish (Danio rerio). Based on KAE-NA in vitro permeation evaluation, the percentage of permeation was significantly improved from 4.94% at 1 h to 59.64% at 8 h of application. The permeation rate of KAE-NA at 8 h was 4659.50 µg cm-2 h-1 (initial concentration, C 0 = 2000 µg mL-1) with a permeability coefficient (K p) value of 0.48 cm h-1. The kinetic release analysis showed the Korsmeyer-Peppas model was the best fitted kinetic model with high linearity [R 2 = 0.9964]. Antimicrobial activity of KAE-NA was studied against the skin pathogen bacteria Staphylococcus aureus ATCC 43300. The results indicated that the inhibition zone size of the KAE-NA (8.00 ± 0.0 mm) was slightly bigger than that of its active ingredient, kojic acid ester (6.5 ± 0.0 mm). The toxicity profile of KAE-NA on embryonic zebrafish revealed less toxicity with LC50 (50% lethal concentration) more than 500 µg mL-1. The survival rate of the embryonic zebrafish was more than 80% when treated at doses ranging from 7.81-250 µg mL-1 and showed normal development throughout the experiment without any observed deformation. Hence, KAE-NA proved to be less toxic on the embryonic zebrafish.

14.
Int J Nanomedicine ; 14: 7323-7338, 2019.
Article in English | MEDLINE | ID: mdl-31686809

ABSTRACT

BACKGROUND: Gemcitabine (GEM) is a chemotherapeutic agent, which is known to battle cancer but challenging due to its hydrophilic nature. Nanoemulsion is water-in-oil (W/O) nanoemulsion shows potential as a carrier system in delivering gemcitabine to the cancer cell. METHODS: The behaviour of GEM in MCT/surfactants/NaCl systems was studied in the ternary system at different ratios of Tween 80 and Span 80. The system with surfactant ratio 3:7 of Tween 80 and Span 80 was chosen for further study on the preparation of nanoemulsion formulation due to the highest isotropic region. Based on the selected ternary phase diagram, a composition of F1 was chosen and used for optimization by using the D-optimal mixture design. The interaction variables between medium chain triglyceride (MCT), surfactant mixture Tween 80: Span 80 (ratio 3:7), 0.9 % sodium chloride solution and gemcitabine were evaluated towards particle size as a response. RESULTS: The results showed that NaCl solution and GEM gave more effects on particle size, polydispersity index and zeta potential of 141.57±0.05 nm, 0.168 and -37.10 mV, respectively. The optimized nanoemulsion showed good stability (no phase separation) against centrifugation test and storage at three different temperatures. The in vitro release of gemcitabine at different pH buffer solution was evaluated. The results showed the release of GEM in buffer pH 6.5 (45.19%) was higher than GEM in buffer pH 7.4 (13.62%). The cytotoxicity study showed that the optimized nanoemulsion containing GEM induced cytotoxicity towards A549 cell and at the same time reduced cytotoxicity towards MRC5 when compared to the control (GEM solution).


Subject(s)
Deoxycytidine/analogs & derivatives , Emulsions/chemistry , Fetus/cytology , Fibroblasts/cytology , Lung Neoplasms/drug therapy , Lung/embryology , Nanoparticles/chemistry , A549 Cells , Analysis of Variance , Cell Death/drug effects , Cell Line , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Fibroblasts/drug effects , Humans , Inhibitory Concentration 50 , Kinetics , Particle Size , Phase Transition , Polysorbates/chemistry , Surface-Active Agents/chemistry , Gemcitabine
15.
J Oleo Sci ; 68(8): 747-757, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31292338

ABSTRACT

The present study revealed the optimization of nanoemulsion containing palm oil derivatives and Parthenium hysterophorus L. crude extract (PHCE) as pre-emergence herbicide formulation against Diodia ocimifolia. The nanoemulsion formulation was prepared by high energy emulsification method, and it was optimized by mixture experimental design (MED). From the optimization process, analysis of variance (ANOVA) showed a fit quadratic polynomial model with an optimal formulation composition containing 30.91% of palm kernel oil ester (PKOE), 28.48% of mixed surfactants (Tensiofix and Tween 80, 8:2), 28.32% of water and 12.29% of PHCE. The reading of both experimental and predicted particle size in the verification experiment were acceptable with a residual standard error (RSE) was less than 2%. Under the optimal condition, the smallest particle size obtained was 140.10 nm, and the particle was shown by morphology analysis to be spherical and demonstrated good stability (no phase separation) under centrifugation and different storage conditions (25 ± 5°C and 45°C). Nanoemulsion stored for 60 days exhibits monodisperse emulsion with a slight increase of particle size. The increase in particle size over time might have contributed by Ostwald ripening phenomenon which is shown by a linear graph from Ostwald ripening rate analysis. In the in vitro germination test, P. hysterophorus nanoemulsion (PHNE) was shown to cause total inhibition of D. ocimifolia seed at lower concentration (5 g L-1) as compared to PHCE (10 g L-1). The finding of the research could potentially serve as a platform for the development of palm oil based formulation containing plant crude extract for green weed management.


Subject(s)
Asteraceae/chemistry , Emulsions/chemistry , Herbicides/toxicity , Plant Extracts/toxicity , Plant Oils/chemistry , Herbicides/chemistry , Herbicides/isolation & purification , Palm Oil , Parthenogenesis , Particle Size , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rubiaceae/drug effects , Seeds/drug effects , Surface Tension
16.
Int J Nanomedicine ; 13: 6465-6479, 2018.
Article in English | MEDLINE | ID: mdl-30410332

ABSTRACT

INTRODUCTION: Kojic monooleate (KMO) is an ester derived from a fungal metabolite of kojic acid with monounsaturated fatty acid, oleic acid, which contains tyrosinase inhibitor to treat skin disorders such as hyperpigmentation. In this study, KMO was formulated in an oil-in-water nanoemulsion as a carrier for better penetration into the skin. METHODS: The nanoemulsion was prepared by using high and low energy emulsification technique. D-optimal mixture experimental design was generated as a tool for optimizing the composition of nanoemulsions suitable for topical delivery systems. Effects of formulation variables including KMO (2.0%-10.0% w/w), mixture of castor oil (CO):lemon essential oil (LO; 9:1) (1.0%-5.0% w/w), Tween 80 (1.0%-4.0% w/w), xanthan gum (0.5%-1.5% w/w), and deionized water (78.8%-94.8% w/w), on droplet size as a response were determined. RESULTS: Analysis of variance showed that the fitness of the quadratic polynomial fits the experimental data with F-value (2,479.87), a low P-value (P<0.0001), and a nonsignificant lack of fit. The optimized formulation of KMO-enriched nanoemulsion with desirable criteria was KMO (10.0% w/w), Tween 80 (3.19% w/w), CO:LO (3.74% w/w), xanthan gum (0.70% w/w), and deionized water (81.68% w/w). This optimum formulation showed good agreement between the actual droplet size (110.01 nm) and the predicted droplet size (111.73 nm) with a residual standard error <2.0%. The optimized formulation with pH values (6.28) showed high conductivity (1,492.00 µScm-1) and remained stable under accelerated stability study during storage at 4°C, 25°C, and 45°C for 90 days, centrifugal force as well as freeze-thaw cycles. Rheology measurement justified that the optimized formulation was more elastic (shear thinning and pseudo-plastic properties) rather than demonstrating viscous characteristics. In vitro cytotoxicity of the optimized KMO formulation and KMO oil showed that IC50 (50% inhibition of cell viability) value was >100 µg/mL. CONCLUSION: The survival rate of 3T3 cell on KMO formulation (54.76%) was found to be higher compared to KMO oil (53.37%) without any toxicity sign. This proved that the KMO formulation was less toxic and can be applied for cosmeceutical applications.


Subject(s)
Emulsions/chemistry , Hyperpigmentation/drug therapy , Nanoparticles/ultrastructure , Oils/chemistry , Oleic Acid/therapeutic use , Pyrones/therapeutic use , Water/chemistry , 3T3 Cells , Analysis of Variance , Animals , Cell Death/drug effects , Mice , Nanoparticles/chemistry , Particle Size , Pyrones/toxicity , Reproducibility of Results , Solubility , Time Factors
17.
Molecules ; 23(2)2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29438284

ABSTRACT

Azelaic acid (AzA) and its derivatives have been known to be effective in the treatment of acne and various cutaneous hyperpigmentary disorders. The esterification of azelaic acid with lauryl alcohol (LA) to produce dilaurylazelate using immobilized lipase B from Candida antarctica (Novozym 435) is reported. Response surface methodology was selected to optimize the reaction conditions. A well-fitting quadratic polynomial regression model for the acid conversion was established with regards to several parameters, including reaction time and temperature, enzyme amount, and substrate molar ratios. The regression equation obtained by the central composite design of RSM predicted that the optimal reaction conditions included a reaction time of 360 min, 0.14 g of enzyme, a reaction temperature of 46 °C, and a molar ratio of substrates of 1:4.1. The results from the model were in good agreement with the experimental data and were within the experimental range (R² of 0.9732).The inhibition zone can be seen at dilaurylazelate ester with diameter 9.0±0.1 mm activities against Staphylococcus epidermidis S273. The normal fibroblasts cell line (3T3) was used to assess the cytotoxicity activity of AzA and AzA derivative, which is dilaurylazelate ester. The comparison of the IC50 (50% inhibition of cell viability) value for AzA and AzA derivative was demonstrated. The IC50 value for AzA was 85.28 µg/mL, whereas the IC50 value for AzA derivative was more than 100 µg/mL. The 3T3 cell was still able to survive without any sign of toxicity from the AzA derivative; thus, it was proven to be non-toxic in this MTT assay when compared with AzA.


Subject(s)
Dicarboxylic Acids/chemistry , Dodecanol/chemistry , Enzymes, Immobilized/chemistry , Esters/chemistry , Fungal Proteins/chemistry , Lipase/chemistry , Animals , Biocatalysis , Cell Survival/drug effects , Dicarboxylic Acids/pharmacology , Esters/pharmacology , Factor Analysis, Statistical , Kinetics , Mice , Microbial Sensitivity Tests , Models, Statistical , NIH 3T3 Cells , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/growth & development
18.
Chem Cent J ; 11(1): 54, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-29086900

ABSTRACT

BACKGROUND: Clinacanthus nutans Lindau is a well-known plant, native to tropical Asian countries. Reports on this plant that is rich in phenolic compounds have focused on its therapeutic anti-inflammatory, anti-herpes simplex, antioxidant, and anti-cancer characteristics. In this paper, the influence of the extraction parameters-temperatures (60-80 °C), times (80-120 min), and solvent ratios (70:30-90:10) of water:ethanol were investigated using response surface methodology in order to determine the optimum extraction conditions that could produce maximum extraction yields of the phenolic compounds and the highest anti-radical activity of the C. nutans extract. RESULTS: The optimum conditions suggested by the predicted model were: an extraction temperature of 60 °C, an extraction time of 120 min and a water:ethanol solvent ratio of 90:10 v/v%. The residual standard error of 0.2% indicated that there was no significant difference between the actual and predicted values and it proved that the models were adequate to predict the relevant responses. All the independent variables had a significant effect (p < 0.05) on all the responses which indicated that all extraction parameters employed in this study were important in the optimization process. The R2 values for three responses, extraction yields, DPPH radical scavenging activity and TPC were 0.9999, 0.9999 and 0.9983 respectively, suggesting that the quadratic polynomial models developed were satisfactorily accurate to be used in analyzing the interactions of the parameters (response and independent variables). CONCLUSION: This study could be useful in the development of cosmeceutical products containing extracts of C. nutans.

19.
PLoS One ; 10(12): e0144664, 2015.
Article in English | MEDLINE | ID: mdl-26657030

ABSTRACT

Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.


Subject(s)
Esters/chemical synthesis , Lipase/chemistry , Oleic Acid/chemistry , Pyrones/chemistry , Catalysis , Esterification
20.
Enzyme Microb Technol ; 55: 128-32, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24411455

ABSTRACT

The aim of this work was the synthesis of a novel hydroxyl-fatty acid derivative of kojic acid rich in kojic acid monoricinoleate (KMR) which can be widely used in the cosmetic and food industry. The synthesis of KMR was carried out by lipase-catalysed esterification of ricinoleic and kojic acids in solvent-free system. Three immobilized lipases were tested and the best KMR yields were attained with Lipozyme TL IM and Novozym 435. Since Lipozyme TL IM is the cheapest, it was selected to optimize the reaction conditions. The optimal reaction conditions were 80 °C for the temperature, 1:1 for the alcohol/acid molar ratio, 600 rpm for stirring speed and 7.8% for the catalyst concentration. Under these conditions, the reaction was scaled up in a 5×10⁻³ m³ stirred tank reactor. ¹H-¹³C HMBC-NMR showed that the primary hydroxyl group of kojic acid was regioselectively esterified. The KMR has more lipophilicity than kojic acid and showed antioxidant activity that improves the oxidation stability of biodiesel.


Subject(s)
Lipase/metabolism , Pyrones/analysis , Ricinoleic Acids/metabolism , Antioxidants/pharmacology , Biocatalysis , Biofuels , Candida/enzymology , Drug Stability , Enzymes, Immobilized , Esterification , Eurotiales/enzymology , Fatty Acids, Monounsaturated , Fungal Proteins/metabolism , Plant Oils , Pyrones/chemistry , Pyrones/metabolism , Rapeseed Oil , Rhizomucor/enzymology , Solubility , Solvents , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...