Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(37): e2207595, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36437049

ABSTRACT

Emerging concepts for neuromorphic computing, bioelectronics, and brain-computer interfacing inspire new research avenues aimed at understanding the relationship between oxidation state and conductivity in unexplored materials. This report expands the materials playground for neuromorphic devices to include a mixed valence inorganic 3D coordination framework, a ruthenium Prussian blue analog (RuPBA), for flexible and biocompatible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. The electrochemically tunable degree of mixed valency and electronic coupling between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory computations and application of electron transfer theory to in situ spectroscopy of intervalence charge transfer. Retention of programmed states is improved by nearly two orders of magnitude compared to extensively studied organic polymers, thus reducing the frequency, complexity, and energy costs associated with error correction schemes. This report demonstrates dopamine-mediated plasticity of RuPBA synapses and biocompatibility of RuPBA with neuronal cells, evoking prospective application for brain-computer interfacing.

2.
ACS Appl Mater Interfaces ; 15(1): 893-902, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36538758

ABSTRACT

Li-metal batteries (LMBs) employing conversion cathode materials (e.g., FeF3) are a promising way to prepare inexpensive, environmentally friendly batteries with high energy density. Pseudo-solid-state ionogel separators harness the energy density and safety advantages of solid-state LMBs, while alleviating key drawbacks (e.g., poor ionic conductivity and high interfacial resistance). In this work, a pseudo-solid-state conversion battery (Li-FeF3) is presented that achieves stable, high rate (1.0 mA cm-2) cycling at room temperature. The batteries described herein contain gel-infiltrated FeF3 cathodes prepared by exchanging the ionic liquid in a polymer ionogel with a localized high-concentration electrolyte (LHCE). The LHCE gel merges the benefits of a flexible separator (e.g., adaptation to conversion-related volume changes) with the excellent chemical stability and high ionic conductivity (∼2 mS cm-1 at 25 °C) of an LHCE. The latter property is in contrast to previous solid-state iron fluoride batteries, where poor ionic conductivities necessitated elevated temperatures to realize practical power levels. The stable, room-temperature Li-FeF3 cycling performance obtained with the LHCE gel at high current densities paves the way for exploring a range of architectures including flexible, three-dimensional, and custom shape batteries.

3.
ACS Nano ; 16(10): 16363-16371, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36129847

ABSTRACT

LixCoO2 (LCO) is a common battery cathode material that has recently emerged as a promising material for other applications including electrocatalysis and as electrochemical random access memory (ECRAM). During charge-discharge cycling LCO exhibits phase transformations that are significantly complicated by electron correlation. While the bulk phase diagram for an ensemble of battery particles has been studied extensively, it remains unclear how these phases scale to nanometer dimensions and the effects of strain and diffusional anisotropy at the single-particle scale. Understanding these effects is critical to modeling battery performance and for predicting the scalability and performance of electrocatalysts and ECRAM. Here we investigate isolated, epitaxial LiCoO2 islands grown by pulsed laser deposition. After electrochemical cycling of the islands, conductive atomic force microscopy (c-AFM) is used to image the spatial distribution of conductive and insulating phases. Above 20 nm island thicknesses, we observe a kinetically arrested state in which the phase boundary is perpendicular to the Li-planes; we propose a model and present image analysis results that show smaller LCO islands have a higher conductive fraction than larger area islands, and the overall conductive fraction is consistent with the lithiation state. Thinner islands (14 nm), with a larger surface to volume ratio, are found to exhibit a striping pattern, which suggests surface energy can dominate below a critical dimension. When increasing force is applied through the AFM tip to strain the LCO islands, significant shifts in current flow are observed, and underlying mechanisms for this behavior are discussed. The c-AFM images are compared with photoemission electron microscopy images, which are used to acquire statistics across hundreds of particles. The results indicate that strain and morphology become more critical to electrochemical performance as particles approach nanometer dimensions.

4.
Article in English | MEDLINE | ID: mdl-35666993

ABSTRACT

Conversion cathodes represent a viable route to improve rechargeable Li+ battery energy densities, but their poor electrochemical stability and power density have impeded their practical implementation. Here, we explore the impact cell fabrication, electrolyte interaction, and current density have on the electrochemical performance of FeS2/Li cells by deconvoluting the contributions of the various conversion and intercalation reactions to the overall capacity. By varying the slurry composition and applied pressure, we determine that the capacity loss is primarily due to the large volume changes during (de)lithiation, leading to a degradation of the conductive matrix. Through the application of an external pressure, the loss is minimized by maintaining the conductive matrix. We further determine that polysulfide loss can be minimized by increasing the current density (>C/10), thus reducing the sulfur formation period. Analysis of the kinetics determines that the conversion reactions are rate-limiting, specifically the formation of metallic iron at rates above C/8. While focused on FeS2, our findings on the influence of pressure, electrolyte interaction, and kinetics are broadly applicable to other conversion cathode systems.

5.
Adv Sci (Weinh) ; 9(12): e2105803, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35199953

ABSTRACT

FeF3 conversion cathodes, paired with Li metal, are promising for use in next-generation secondary batteries and offer a remarkable theoretical energy density of 1947 Wh kg-1 compared to 690 Wh kg-1 for LiNi0.5 Mn1.5 O4 ; however, many successful studies on FeF3 cathodes are performed in cells with a large (>90-fold) excess of Li that disguises the effects of tested variables on the anode and decreases the practical energy density of the battery. Herein, it is demonstrated that for full-cell compatibility, the electrolyte must produce both a protective solid-electrolyte interphase and cathode-electrolyte interphase and that an electrolyte composed of 1:1.3:3 (m/m) LiFSI, 1,2-dimethoxyethane, and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether fulfills both these requirements. This work demonstrates the importance of verifying electrode level solutions on the full-cell level when developing new battery chemistries and represents the first full cell demonstration of a Li/FeF3 cell, with both limited Li and high capacity FeF3 utilization.

6.
ACS Nano ; 14(11): 14820-14830, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33137258

ABSTRACT

Tin-based alloying anodes are exciting due to their high energy density. Unfortunately, these materials pulverize after repetitive cycling due to the large volume expansion during lithiation and delithiation; both nanostructuring and intermetallic formation can help alleviate this structural damage. Here, these ideas are combined in nanoporous antimony-tin (NP-SbSn) powders, synthesized by a simple and scalable selective-etching method. The NP-SbSn exhibits bimodal porosity that facilitates electrolyte diffusion; those void spaces, combined with the presence of two metals that alloy with lithium at different potentials, further provide a buffer against volume change. This stabilizes the structure to give NP-SbSn good cycle life (595 mAh/g after 100 cycles with 93% capacity retention). Operando transmission X-ray microscopy (TXM) showed that during cycling NP-SbSn expands by only 60% in area and then contracts back nearly to its original size with no physical disintegration. The pores shrink during lithiation as the pore walls expand into the pore space and then relax back to their initial size during delithiation with almost no degradation. Importantly, the pores remained open even in the fully lithiated state, and structures are in good physical condition after the 36th cycle. The results of this work should thus be useful for designing nanoscale structures in alloying anodes.

7.
Adv Mater ; 32(45): e2003984, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32964602

ABSTRACT

Digital computing is nearing its physical limits as computing needs and energy consumption rapidly increase. Analogue-memory-based neuromorphic computing can be orders of magnitude more energy efficient at data-intensive tasks like deep neural networks, but has been limited by the inaccurate and unpredictable switching of analogue resistive memory. Filamentary resistive random access memory (RRAM) suffers from stochastic switching due to the random kinetic motion of discrete defects in the nanometer-sized filament. In this work, this stochasticity is overcome by incorporating a solid electrolyte interlayer, in this case, yttria-stabilized zirconia (YSZ), toward eliminating filaments. Filament-free, bulk-RRAM cells instead store analogue states using the bulk point defect concentration, yielding predictable switching because the statistical ensemble behavior of oxygen vacancy defects is deterministic even when individual defects are stochastic. Both experiments and modeling show bulk-RRAM devices using TiO2- X switching layers and YSZ electrolytes yield deterministic and linear analogue switching for efficient inference and training. Bulk-RRAM solves many outstanding issues with memristor unpredictability that have inhibited commercialization, and can, therefore, enable unprecedented new applications for energy-efficient neuromorphic computing. Beyond RRAM, this work shows how harnessing bulk point defects in ionic materials can be used to engineer deterministic nanoelectronic materials and devices.

8.
ACS Appl Mater Interfaces ; 11(12): 12088-12097, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30801176

ABSTRACT

Ionogels, pseudo-solid-state electrolytes consisting of an ionic liquid electrolyte confined in a mesoporous inorganic matrix, have attracted interest recently due to their high ionic conductivity and physicochemical stability. These traits, coupled with their inherent solution processability, make them a viable solid electrolyte for solid-state battery systems. Despite the promising properties of ionogels, there have been very few investigations of the electrode-ionogel interface. In the present study, X-ray photoelectron spectroscopy, Raman spectroscopy, and electrochemical measurements were utilized to probe the surface reactions occurring at the electrode-ionogel interface for several electrode materials. Our results indicate that the sol acidity initiates breakdown of the organic constituents of the sol and reduction of the transition metals present in the electrode materials. This chemical attack forms an organic surface layer and affects the electrode composition, both of which can impede Li+ access. By modifying the silica sol-gel reaction via a two-step acid-base catalysis, these interfacial reactions can be avoided. Results are shown for a LiCoO2 electrode in which a high Li-ion capacity and stable cycling were achieved.

9.
Chem Mater ; 31(21): 8977-8986, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-32536746

ABSTRACT

Thin-film formation and transport properties of two copper-paddlewheel metal-organic framework (MOF) -based systems (MOF-14 and MOF-399) are investigated for their potential integration into electrochemical device architectures. Thin-film analogs of these two systems are fabricated by the sequential, alternating, solution-phase deposition of the inorganic and organic ligand precursors that result in conformal films via van der Merwe-like growth. Atomic force microscopy reveals smooth film morphologies with surface roughnesses determined by the underlying substrates and linear film growth of 1.4 and 2.2 nm per layer for the MOF-14 and MOF-399 systems, respectively. Electrochemical impedance spectroscopy is used to evaluate the electronic transport properties of the thin films, finding that the MOF-14 analog films demonstrate low electronic conductivity, while MOF-399 analog films are electronically insulating. The intrinsic porosities of these ultrathin MOF analog films are confirmed by cyclic voltammetry redox probe characterization using ferrocene. Larger peak currents are observed for MOF-399 analog films compared to MOF-14 analog films, which is consistent with the larger pores of MOF-399. The layer-by-layer deposition of these systems provides a promising route to incorporate MOFs as thin films with nanoscale thickness control and low surface roughness for electrochemical devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...