Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 141(1): 67-71, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30575375

ABSTRACT

We investigated the chemistry of singlet oxygen with a cadmium-sulfur cluster, (Me4N)2[Cd4(SPh)10]. This cluster was used as a model for cadmium-sulfur nanoparticles. Such nanoparticles are often used in conjunction with photosensitizers (for singlet oxygen generation or dye-sensitized solar cells), and hence, it is important to determine if cadmium-sulfur moieties physically quench and/or chemically react with singlet oxygen. We found that (Me4N)2[Cd4(SPh)10] is indeed a very strong quencher of singlet oxygen with total rate constants for 1O2 removal of (5.8 ± 1.3) × 108 M-1 s-1 in acetonitrile and (1.2 ± 0.5) × 108 M-1 s-1 in CD3OD. Physical quenching predominates, but chemical reaction leading to decomposition of the cluster and formation of sulfinate is also significant, with a rate constant of (4.1 ± 0.6) × 106 M-1 s-1 in methanol. Commercially available cadmium-sulfur quantum dots ("lumidots") show similar singlet oxygen quenching rate constants, based on the molar concentration of the quantum dots.


Subject(s)
Cadmium/chemistry , Photochemical Processes , Singlet Oxygen/chemistry , Sulfur/chemistry , Oxidation-Reduction
2.
Photochem Photobiol ; 90(2): 257-74, 2014.
Article in English | MEDLINE | ID: mdl-24344628

ABSTRACT

While cyclometalated complexes have been extensively studied for optoelectronic applications, these compounds also represent a relatively new class of photosensitizers for the production of singlet oxygen. Thus far, singlet oxygen generation from cyclometalated Ir and Pt complexes has been studied in detail. In this review, photophysical data for singlet oxygen generation from these complexes are presented, and the mechanism of (1) O2 generation is discussed, including evidence for singlet oxygen generation via an electron-transfer mechanism for some of cyclometalated Ir complexes. The period from the first report of singlet oxygen generation by a cyclometalated Ir complex in 2002 through August 2013 is covered in this review. This new class of singlet oxygen photosensitizers may prove to be rather versatile due to the ease of substitution of ancillary ligands without loss of activity. Several cyclometalated complexes have been tethered to zeolites, polystyrene, or quantum dots. Applications for photooxygenation of organic molecules, including "traditional" singlet oxygen reactions (ene reaction, [4 + 2] and [2 + 2] cycloadditions) as well as oxidative coupling of amines are presented. Potential biomedical applications are also reviewed.


Subject(s)
Metals/chemistry , Singlet Oxygen/chemistry , Cyclization
SELECTION OF CITATIONS
SEARCH DETAIL
...