Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 715: 136795, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32018098

ABSTRACT

Transient, acutely toxic concentrations of pesticides in streams can go undetected by fixed-interval sampling programs. Here we compare temporal patterns in occurrence of current-use pesticides in daily composite samples to those in weekly composite and weekly discrete samples of surface water from 14 small stream sites. Samples were collected over 10-14 weeks at 7 stream sites in each of the Midwestern and Southeastern United States. Samples were analyzed for over 200 pesticides and degradates by direct aqueous injection liquid chromatography with tandem mass spectrometry. Nearly 2 and 3 times as many unique pesticides were detected in daily samples as in weekly composite and weekly discrete samples, respectively. Based on exceedances of acute-invertebrate benchmarks (AIB) and(or) a Pesticide Toxicity Index (PTI) >1, potential acute-invertebrate toxicity was predicted at 11 of 14 sites from the results for daily composite samples, but was predicted for only 3 sites from weekly composites and for no sites from weekly discrete samples. Insecticides were responsible for most of the potential invertebrate toxicity, occurred transiently, and frequently were missed by the weekly discrete and composite samples. The number of days with benthic-invertebrate PTI ≥0.1 in daily composite samples was inversely related to Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness at the sites. The results of the study indicate that short-term, potentially toxic peaks in pesticides frequently are missed by weekly discrete sampling, and that such peaks may contribute to degradation of invertebrate community condition in small streams. Weekly composite samples underestimated maximum concentrations and potential acute-invertebrate toxicity, but to a lesser degree than weekly discrete samples, and provided a reasonable approximation of the 90th percentile total concentrations of herbicides, insecticides, and fungicides, suggesting that weekly composite sampling may be a compromise between assessment needs and cost.


Subject(s)
Rivers , Animals , Environmental Monitoring , Pesticides , Southeastern United States , Water Pollutants, Chemical
2.
Appl Spectrosc ; 67(3): 253-60, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23452488

ABSTRACT

Vibrational sum-frequency spectroscopy (VSFS) has been used for some time as a laboratory-based surface chemical analytical tool. Here, theoretical considerations in applying the method as a remote-sensing probe for detecting trace levels of chemicals adsorbed on surfaces are presented. Additionally, a VSFS instrument is configured to operate at a stand-off distance of 2.2 m using near-nadir incidence angles. This system was used to measure VSFS spectra for films of pure 1-amino-4-nitrobenzene (p-nitroaniline, PNA) and pure 2-hydroxy-1,3,5-trinitrobenzene (picric acid, PA) adsorbed on polished T-6061 aluminum alloy. These spectra are used to investigate the effect of optical polarization on the sum-frequency response of these compounds at nadir optical geometries. Detection limits for each compound are also estimated and found to be 0.51 µg cm(2) for PNA and 0.89 µg cm(2) for PA. The implications of these results regarding remote sensing applications of VSFS are discussed.

3.
Ann Rev Mar Sci ; 1: 213-44, 2009.
Article in English | MEDLINE | ID: mdl-21141036

ABSTRACT

The past decade has seen a substantial amount of research on air-sea gas exchange and its environmental controls. These studies have significantly advanced the understanding of processes that control gas transfer, led to higher quality field measurements, and improved estimates of the flux of climate-relevant gases between the ocean and atmosphere. This review discusses the fundamental principles of air-sea gas transfer and recent developments in gas transfer theory, parameterizations, and measurement techniques in the context of the exchange of carbon dioxide. However, much of this discussion is applicable to any sparingly soluble, non-reactive gas. We show how the use of global variables of environmental forcing that have recently become available and gas exchange relationships that incorporate the main forcing factors will lead to improved estimates of global and regional air-sea gas fluxes based on better fundamental physical, chemical, and biological foundations.


Subject(s)
Air , Carbon Cycle , Chemistry Techniques, Analytical , Environment , Environmental Monitoring/methods , Seawater/chemistry , Atmosphere/chemistry , Carbon Dioxide/analysis , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Chemistry Techniques, Analytical/trends , Environmental Monitoring/instrumentation , Oceans and Seas
4.
Environ Toxicol Chem ; 26(8): 1606-13, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17702332

ABSTRACT

Position-dependent concentrations of trichloroethylene and methyl-tert-butyl ether are considered for a 2.81-km section of the Aberjona River in Massachusetts, USA. This river flows through Woburn and Winchester (Massachusetts, USA), an area that is highly urbanized, has a long history of industrial activities dating to the early 1800s, and has gained national attention because of contamination from chlorinated solvent compounds in Woburn wells G and H. The river study section is in Winchester and begins approximately five stream kilometers downstream from the Woburn wells superfund site. Approximately 300 toxic release sites are documented in the watershed upstream from the terminus of the study section. The inflow to the river study section is considered one source of contamination. Other sources are the atmosphere, a tributary flow, and groundwater flows entering the river; the latter are categorized according to stream zone (1, 2, 3, etc.). Loss processes considered include outflows to groundwater and water-to-atmosphere transfer of volatile compounds. For both trichloroethylene and methyl-tert-butyl ether, degradation is neglected over the timescale of interest. Source apportionment fractions with assigned values alphainflow, alpha2, alpha3, etc. are tracked by a source apportionment model. The strengths of the groundwater and tributary sources serve as fitting parameters when minimizing a reduced least squares statistic between water concentrations measured during a synoptic study in July 2001 versus predictions from the model. The model fits provide strong evidence of substantial unknown groundwater sources of trichloroethylene and methyl-tert-butyl ether amounting to tens of grams per day of trichloroethylene and methyl-tert-butyl ether in the river along the study section. Modeling in a source apportionment manner can be useful to water quality managers allocating limited resources for remediation and source control.


Subject(s)
Cities , Industrial Waste , Organic Chemicals/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Least-Squares Analysis , Massachusetts , Methyl Ethers/analysis , Methyl Ethers/toxicity , Models, Chemical , Organic Chemicals/chemistry , Organic Chemicals/toxicity , Solvents/chemistry , Time Factors , Trichloroethylene/analysis , Trichloroethylene/toxicity , Volatilization , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
5.
Environ Toxicol Chem ; 25(4): 921-32, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16629131

ABSTRACT

It often is of interest to understand the relative importance of the different sources contributing to the concentration c(w) of a contaminant in a stream; the portions related to sources 1, 2, 3, etc. are denoted c(w,1), c(w2), c(w3), etc. Like c(w), the fractions alpha1 = c(w,1)/c(w), alpha2 = c(w,2)/c(w), alpha3 = c(w,3)/c(w), etc. depend on location and time. Volatile organic compounds (VOCs) can undergo absorption from the atmosphere into stream water or loss from stream water to the atmosphere, causing complexities affecting the source apportionment (SA) of VOCs in streams. Two SA rules are elaborated. Rule 1: VOC entering a stream across the air/water interface exclusively is assigned to the atmospheric portion of c(w). Rule 2: VOC loss by volatilization, flow loss to groundwater, in-stream degradation, etc. is distributed over c(w,1), c(w,2), c(w3), etc. in proportion to their corresponding alpha values. How the two SA rules are applied, as well as the nature of the SA output for a given case, will depend on whether transport across the air/water interface is handled using the net flux F convention or using the individual fluxes J convention. Four hypothetical stream cases involving acetone, methyl-tert-butyl ether (MTBE), benzene, chloroform, and perchloroethylene (PCE) are considered. Acetone and MTBE are sufficiently water soluble from air for a domestic atmospheric source to be capable of yielding c(w) values approaching the common water quality guideline range of 1 to 10 microg/L. For most other VOCs, such levels cause net outgassing (F > 0). When F > 0 in a given section of stream, in the net flux convention, all of the alpha(j) for the compound remain unchanged over that section while c(w) decreases. A characteristic time tau(d) can be calculated to predict when there will be differences between SA results obtained by the net flux convention versus the individual fluxes convention. Source apportionment modeling provides the framework necessary for comparing different strategies for mitigating contamination at points of interest along a stream.


Subject(s)
Models, Chemical , Organic Chemicals/analysis , Organic Chemicals/chemistry , Rivers/chemistry , Acetone/chemistry , Atmosphere , Benzene/chemistry , Chloroform/chemistry , Methyl Ethers/chemistry , Soil , Tetrachloroethylene/chemistry , Time Factors , Volatilization , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...