Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36675888

ABSTRACT

The Brown root rot pathogen Pyrrhoderma noxium (Corner) L.W. Zhou and Y.C. Dai is known to infect a large number of culturally and economically important plant species across the world. Although chemical control measures have been effective in managing this pathogen, their adverse effects on the ecosystem have limited their use. The use of biological control agents (BCAs) thus is generally accepted as an environmentally friendly way of managing various pathogens. Testing various consortia of the BCAs with different antagonistic mechanisms may even provide better disease protection than the use of a single BCA against aggressive plant pathogens such as the P. noxium. In the presented study, the wood decay experiment and the pot trial confirmed that the consortium of Trichoderma strains (#5029 and 5001) and streptomycetes (#USC-6914 and #USC-595-B) used was effective in protecting wood decay and plant disease caused by P. noxium. Among the treatments, complete elimination of the pathogen was observed when the BCAs were applied as a consortium. In addition, the BCAs used in this study promoted the plant growth. Therefore, Trichoderma and streptomycetes consortium could be used as a potential biocontrol measure to manage P. noxium infections in the field over the application of hazardous chemical control measures.

2.
Methods Mol Biol ; 2232: 219-249, 2021.
Article in English | MEDLINE | ID: mdl-33161551

ABSTRACT

The genus Streptomyces constitutes approximately 50% of all soil actinomycetes, playing a significant role in the soil microbial community through vital functions including nutrient cycling, production of bioactive metabolites, disease-suppression and plant growth promotion. Streptomyces produce many bioactive compounds and are prime targets for industrial and biotechnological applications. In addition to their agrobiological roles, some Streptomyces spp. can, however, be phytopathogenic, examples include, common scab of potato that causes economic losses worldwide. Currently used chemical control measures can have detrimental effect to environmental and human health as a result alternative methods to chemical disease control are being investigated. One alternative is the use of streptomycete specific phages to remove this pathogenic bacterium before it can cause the disease on potatoes. However, due to co-existence of non-common scab-causing species belonging to the genus Streptomyces, phage treatment is likely to affect a wide range of non-target streptomycete species including the beneficial ones in the soil. Therefore, before such treatment starts the host range of the phages within the targeted family of bacteria should be determined. In a study conducted using soil samples from a Tasmanian potato farm, streptomycetes were isolated and tested against streptomycete-specific phages. Their antifungal activity was also determined using multiple assays against selected phytopathogens. The four strongest antifungal activity-displaying isolates were further tested for their persistent antifungal activity using wheat and Fusarium solani in a pot trial. A second pot trial was also conducted to evaluate whether the beneficial streptomycetes were affected by streptophage treatment and whether their removal via the phage battery would cause opportunistic fungal infections to plants in soil. The streptomycetes prevented the reduction in wheat shoot weight caused by F. solani indicating their disease suppressive effect. However, when phages were added into the pots, the growth of wheat was detrimentally impacted. This finding might suggest that the reduced presence of antifungal streptomycetes via phage-induced lysis might encourage opportunistic fungal infections in plants.


Subject(s)
Fusarium/pathogenicity , Solanum tuberosum/microbiology , Streptomyces/chemistry , Triticum/microbiology , Actinomycetales/chemistry , Actinomycetales/isolation & purification , Farms , Humans , Plant Diseases/genetics , Plant Diseases/prevention & control , Soil Microbiology , Solanum tuberosum/genetics , Streptomyces/isolation & purification , Triticum/genetics
3.
Curr Microbiol ; 75(12): 1589-1601, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30242439

ABSTRACT

Streptophages are currently being investigated to control potato common scab, however, since a majority of streptophages are reported to be polyvalent, their potential to infect beneficial soil streptomycetes during the application process may have unintended consequences. To test this hypothesis, two phytopathogenic fungi, namely Fusarium solani and Rhizoctonia solani, were tested for their detrimental effect on the test crop wheat (Triticum aestivum cv. Gutha). F. solani caused a significant root weight reduction (34%) in the wheat plant and therefore was tested further in the pot trials with actinomycetes present. Sixty-seven streptomycete isolates from a Tasmanian potato farm were screened for their antifungal abilities against the two phytopathogenic fungi. Four actinomycetes found to be strongly antifungal were then tested for their disease-protective abilities against F. solani in pot trials again using wheat. Addition of the streptomycetes into the container media protected the plants against F. solani, indicating that streptomycetes have a disease-suppressive effect. A further pot trial was conducted to evaluate whether these beneficial streptomycete species would be affected by streptophage treatment and subsequently result in an increased risk of fungal infections. When streptophages were added to the pots, the shoot and root growth of wheat declined by 23.6% and 8.0%, respectively, in the pots with the pathogenic fungus compared to the control pots. These differences might suggest that removal of antifungal streptomycetes by polyvalent phages from plant rhizosphere when biocontrol of plant pathogenic streptomycetes (e.g. Streptomyces scabiei) is targeted might encourage secondary fungal infections in the farm environment. The presented data provide preliminary evidence that streptophage treatment of pathogenic streptomycetes may lead to an aggravated disease risk by soil-borne fungal pathogens when naturally present antagonists are removed. As a result, extensive farm site trials are required to determine the long-term detrimental impact of polyvalent streptophage treatments on beneficial soil streptoflora.


Subject(s)
Biological Control Agents/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Streptomyces/metabolism , Actinobacteria/metabolism , Antifungal Agents/metabolism , Fusarium/metabolism , Plant Roots/microbiology , Rhizoctonia/metabolism , Rhizosphere , Soil , Soil Microbiology , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...