Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 97(6): 1484-1496, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27859218

ABSTRACT

Competition - colonization tradeoffs occur in many systems, and theory predicts that they can strongly promote species coexistence. However, there is little empirical evidence that observed competition- colonization tradeoffs are strong enough to maintain diversity in natural systems. This is due in part to a mismatch between theoretical assumptions and biological reality in some systems. We tested whether a competition - colonization tradeoff explains how a diverse trematode guild coexists in California horn snail populations, a system that meets the requisite criteria for the tradeoff to promote coexistence. A field experiment showed that subordinate trematode species tended to have higher colonization rates than dominant species. This tradeoff promoted coexistence in parameterized models but did not fully explain trematode diversity and abundance, suggesting a role of additional diversity maintenance mechanisms. Spatial heterogeneity is an alternative way to promote coexistence if it isolates competing species. We used scale transition theory to expand the competition - colonization tradeoff model to include spatial variation. The parameterized model showed that spatial variation in trematode prevalence did not isolate most species sufficiently to explain the overall high diversity, but could benefit some rare species. Together, the results suggest that several mechanisms combine to maintain diversity, even when a competition - colonization tradeoff occurs.


Subject(s)
Snails/physiology , Trematoda/physiology , Animals , California , Competitive Behavior , Ecosystem , Models, Biological
2.
Ecology ; 97(6): 1484-96, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27459779

ABSTRACT

Competition - colonization tradeoffs occur in many systems, and theory predicts that they can strongly promote species coexistence. However, there is little empirical evidence that observed competition - colonization tradeoffs are strong enough to maintain diversity in natural systems. This is due in part to a mismatch between theoretical assumptions and biological reality in some systems. We tested whether a competition - colonization tradeoff explains how a diverse trematode guild coexists in California horn snail populations, a system that meets the requisite criteria for the tradeoff to promote coexistence. A field experiment showed that subordinate trematode species tended to have higher colonization rates than dominant species. This tradeoff promoted coexistence in parameterized models but did not fully explain trematode diversity and abundance, suggesting a role of additional diversity maintenance mechanisms. Spatial heterogeneity is an alternative way to promote coexistence if it isolates competing species. We used scale transition theory to expand the competition - colonization tradeoff model to include spatial variation. The parameterized model showed that spatial variation in trematode prevalence did not isolate most species sufficiently to explain the overall high diversity, but could benefit some rare species. Together, the results suggest that several mechanisms combine to maintain diversity, even when a competition - colonization tradeoff occurs.


Subject(s)
Ecosystem , Snails/parasitology , Trematoda/physiology , Animal Distribution , Animals , California , Host-Parasite Interactions , Models, Biological , Species Specificity
3.
J Parasitol ; 101(5): 577-86, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26185949

ABSTRACT

Two myxozoan species were observed in the kidney of topsmelt, Atherinops affinis , during a survey of parasites of estuarine fishes in the Carpinteria Salt Marsh Reserve, California. Fish collected on 3 dates in 2012 and 2013 were sectioned and examined histologically. Large extrasporogonic stages occurred in the renal interstitium of several fish from the first 2 collections (5/8, 11/20, respectively) and, in some fish, these replaced over 80% of the kidney. In addition, presporogonic and polysporogonic stages occurred in the lumen of the renal tubules, collecting ducts, and mesonephric ducts. The latter contained subspherical spores with up to 4 polar capsules, consistent with the genus Chloromyxum. For the third collection (15 May 2013, n = 30), we portioned kidneys for examination by histology, wet mount, and DNA extraction for small subunit ribosomal (SSU rDNA) gene sequencing. Histology showed the large extrasporogonic forms in the kidney interstitium of 3 fish and showed 2 other fish with subspherical myxospores in the lumen of the renal tubules with smooth valves and 2 spherical polar capsules consistent with the genus Sphaerospora. Chloromyxum-type myxospores were observed in the renal tubules of 1 fish by wet mount. Sequencing of the kidney tissue from this fish yielded a partial SSU rDNA sequence of 1,769 base pairs (bp). Phylogenetic reconstruction suggested this organism to be a novel species of Chloromyxum, most similar to Chloromyxum careni (84% similarity). In addition, subspherical myxospores with smooth valves and 2 spherical polar capsules consistent with the genus Sphaerospora were observed in wet mounts of 2 fish. Sequencing of the kidney tissue from 1 fish yielded a partial SSU rDNA sequence of 1,937 bp. Phylogenetic reconstruction suggests this organism to be a novel species of Sphaerospora most closely related to Sphaerospora epinepheli (93%). We conclude that these organisms represent novel species of the genera Chloromyxum and Sphaerospora based on host, location, and SSU rDNA sequence. We further conclude that the formation of large, histozoic extrasporogonic stages in the renal interstitium represents developmental stages of Chloromyxum species for the following reasons: (1) Large extrasporogonic stages were only observed in fish with Chloromyxum-type spores developing within the renal tubules, (2) a DNA sequence consistent with the Chloromyxum sp. was only detected in fish with the large extrasporogonic stages, and (3) several Sphaerospora species have extrasporogonic forms, but they are considerably smaller and are composed of far fewer cells.


Subject(s)
Fish Diseases/parasitology , Kidney Diseases/veterinary , Kidney/parasitology , Myxozoa/isolation & purification , Parasitic Diseases, Animal/parasitology , Animals , DNA, Ribosomal/chemistry , Fishes , Kidney/pathology , Kidney Diseases/parasitology , Myxozoa/classification , Myxozoa/genetics , Phylogeny , Wetlands
4.
J Parasitol ; 101(1): 41-4, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25220829

ABSTRACT

Examination of a small portion of the viscera of an oarfish ( Regalecus russellii ) recovered from Santa Catalina Island, southern California, revealed numerous tetraphyllidean tapeworm plerocercoids, Clistobothrium cf. montaukensis; 2 juvenile nematodes, Contracaecum sp.; and a fragment of an adult acanthocephalan, family Arhythmacanthidae. This suggests that the fish was relatively heavily parasitized. The presence of larval and juvenile worms suggests that oarfish are preyed upon by deep-swimming predators such as the shortfin mako shark, Isurus oxyrinchus , known to be a definitive host for the adult tapeworm, and also by diving mammals such as sperm whales, Physeter catodon L., hosts of Contracaecum spp. nematodes.


Subject(s)
Fish Diseases/parasitology , Helminthiasis, Animal/parasitology , Acanthocephala/anatomy & histology , Acanthocephala/classification , Acanthocephala/isolation & purification , Animals , Base Sequence , California , Cestoda/classification , Cestoda/genetics , Cestoda/isolation & purification , Cestoda/ultrastructure , Cestode Infections/parasitology , Cestode Infections/veterinary , DNA, Ribosomal/chemistry , Fishes , Microscopy, Electron, Scanning , Molecular Sequence Data , Nematoda/anatomy & histology , Nematoda/classification , Nematoda/isolation & purification , Nematode Infections/parasitology , Nematode Infections/veterinary , Pacific Ocean , RNA, Ribosomal, 28S/genetics , Viscera/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...