Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Microbiol Resour Announc ; 13(2): e0093023, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38289053

ABSTRACT

Brucella abortus causes infections in humans and livestock. Bacterial isolates are challenging to obtain, and very little is known about the genomic epidemiology of this species in Africa. Here, we report the complete genome sequence of a Brucella abortus isolate cultured from a febrile human in northern Tanzania.

2.
Emerg Infect Dis ; 30(1): 155-158, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147057

ABSTRACT

After reports in 2017 of Brucella neotomae infections among humans in Costa Rica, we sequenced 12 strains isolated from rodents during 1955-1964 from Utah, USA. We observed an exact strain match between the human isolates and 1 Utah isolate. Independent confirmation is required to clarify B. neotomae zoonotic potential.


Subject(s)
Brucella , Brucellosis , Humans , Genomics , Brucella/genetics , Brucellosis/epidemiology , Brucellosis/veterinary , Costa Rica/epidemiology
3.
Front Public Health ; 11: 1204525, 2023.
Article in English | MEDLINE | ID: mdl-37771833

ABSTRACT

Background: Tuberculosis (TB) is a major cause of ill health and one of the leading causes of death worldwide, caused by species of the Mycobacterium tuberculosis complex (MTBC), with Mycobacterium tuberculosis being the dominant pathogen in humans and Mycobacterium bovis in cattle. Zoonotic transmission of TB (zTB) to humans is frequent particularly where TB prevalence is high in cattle. In this study, we explored the prevalence of zTB in central Ethiopia, an area highly affected by bovine TB (bTB) in cattle. Method: A convenient sample of 385 patients with pulmonary tuberculosis (PTB, N = 287) and tuberculous lymphadenitis (TBLN, N = 98) were included in this cross-sectional study in central Ethiopia. Sputum and fine needle aspirate (FNA) samples were obtained from patients with PTB and TBLN, respectively, and cultures were performed using BACTEC™ MGIT™ 960. All culture positive samples were subjected to quantitative PCR (qPCR) assays, targeting IS1081, RD9 and RD4 genomic regions for detection of MTBC, M. tuberculosis and M. bovis, respectively. Results: Two hundred and fifty-five out of 385 sampled patients were culture positive and all were isolates identified as MTBC by being positive for the IS1081 assay. Among them, 249 (97.6%) samples had also a positive RD9 result (intact RD9 locus) and were consequently classified as M. tuberculosis. The remaining six (2.4%) isolates were RD4 deficient and thereby classified as M. bovis. Five out of these six M. bovis strains originated from PTB patients whereas one was isolated from a TBLN patient. Occupational risk and the widespread consumption of raw animal products were identified as potential sources of M. bovis infection in humans, and the isolation of M. bovis from PTB patients suggests the possibility of human-to-human transmission, particularly in patients with no known contact history with animals. Conclusion: The detected proportion of culture positive cases of 2.4% being M. bovis from this region was higher zTB rate than previously reported for the general population of Ethiopia. Patients with M. bovis infection are more likely to get less efficient TB treatment because M. bovis is inherently resistant to pyrazinamide. MTBC species identification should be performed where M. bovis is common in cattle, especially in patients who have a history of recurrence or treatment failure.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis, Bovine , Tuberculosis, Lymph Node , Animals , Cattle , Humans , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/microbiology , Ethiopia/epidemiology , Cross-Sectional Studies , Mycobacterium tuberculosis/genetics , Tuberculosis, Lymph Node/epidemiology , Tuberculosis, Lymph Node/veterinary , Tuberculosis, Lymph Node/microbiology
4.
Front Microbiol ; 14: 1128966, 2023.
Article in English | MEDLINE | ID: mdl-37213520

ABSTRACT

Brucellosis remains one of the most significant zoonotic diseases globally, responsible for both considerable human morbidity and economic losses due to its impacts on livestock productivity. Despite this, there remain significant evidence gaps in many low- and middle-income countries, including those of sub-Saharan Africa. Here we report the first molecular characterisation of Brucella sp. from Ethiopia. Fifteen Brucella sp. isolates from an outbreak in cattle from a herd in central Ethiopia were identified as Brucella abortus, using bacterial culture and molecular methods. Sequencing of the Ethiopian B. abortus isolates allowed their phylogenetic comparison with 411 B. abortus strains of diverse geographical origins, using whole genome single nucleotide polymorphisms (wgSNP). The Ethiopian isolates belonged to an early-branching lineage (Lineage A) previously only represented by data from two strains, both of sub-Saharan African origin (Kenya and Mozambique). A second B. abortus lineage (Lineage B), also comprised solely of strains originating from sub-Saharan Africa, was identified. The majority of strains belonged to one of two lineages of strains originating from a much broader geographical range. Further analyses based on multi-locus sequence typing (MLST) and multi-locus variable-number tandem repeat analysis (MLVA) expanded the number of B. abortus strains available for comparison with the Ethiopian isolates and were consistent with the findings from wgSNP analysis. MLST profiles of the Ethiopian isolates expanded the sequence type (ST) diversity of the early branching lineage of B. abortus, equivalent to wgSNP Lineage A. A more diverse cluster of STs, equivalent to wgSNP Lineage B, was comprised solely of strains originating from sub-Saharan Africa. Similarly, analysis of B. abortus MLVA profiles (n = 1891) confirmed that the Ethiopian isolates formed a unique cluster, similar to only two existing strains, and distinct from the majority of other strains of sub-Saharan African origin. These findings expand the known diversity of an under-represented lineage of B. abortus and suggest a potential evolutionary origin for the species in East Africa. In addition to providing information concerning Brucella species extant within Ethiopia this work serves as the basis for further studies on the global population structure and evolutionary history of a major zoonotic pathogen.

5.
Acta Trop ; 229: 106363, 2022 May.
Article in English | MEDLINE | ID: mdl-35149040

ABSTRACT

Brucellosis is an endemic infection in Iran and represents a serious health problem in humans and livestock causing important economic losses. The objective of this study was to undertake molecular characterization of Brucella spp. isolated from humans and livestock in several provinces of Iran including by multi-locus sequence typing (MLST), in order to understand the genotypes circulating in Iran and their relationship to genotypes globally. A total of 23 Brucella isolates were isolated from eight milk samples (seven cows, and one camel), human blood samples (seven), bovine lymph nodes (two), and samples from aborted fetuses (three sheep, two cows, and one goat). Phenotypic and molecular identification of Brucella isolates was performed on all isolated bacteria and showed that all were either Brucella melitensis or Brucella abortus. B. melitensis was associated with ovine/caprine and camel samples, most human isolates, and a significant minority of cattle isolates. In contrast B. abortus from livestock was associated only with isolations from bovine samples, as well as a single human sample. These results indicate that both B. melitensis and B. abortus contribute to the human brucellosis burden in Iran. B. melitensis isolates comprised three MLST-9 genotypes, the common and globally distributed ST8, a single representative of ST7, and several additional examples of ST102, a genotype previously only reported in a single isolate from a human brucellosis case believed to be acquired through travel to Iran. B. abortus isolates represented two globally common MLST-9 genotypes (ST1 and ST2), with relationships to biotype and other PCR-based typing methods consistent with previous observations. The results provide the basis for further studies examining the molecular epidemiology of Brucella circulating in Iran and the relationships of local isolates to those present globally.


Subject(s)
Brucella melitensis , Brucellosis , Animals , Brucella abortus/genetics , Brucella melitensis/genetics , Brucellosis/epidemiology , Brucellosis/microbiology , Brucellosis/veterinary , Cattle , Female , Genotype , Goats , Humans , Iran/epidemiology , Multilocus Sequence Typing , Sheep
6.
Front Microbiol ; 11: 1329, 2020.
Article in English | MEDLINE | ID: mdl-32760355

ABSTRACT

The bacterial family Brucellaceae is currently composed of seven genera, including species of the genus Brucella, a number of which are significant veterinary and zoonotic pathogens. The bacteriological identification of pathogenic Brucella spp. may be hindered by their close phenotypic similarity to other members of the Brucellaceae, particularly of the genus Ochrobactrum. Additionally, a number of novel atypical Brucella taxa have recently been identified, which exhibit greater genetic diversity than observed within the previously described species, and which share genomic features with organisms outside of the genus. Furthermore, previous work has indicated that the genus Ochrobactrum is polyphyletic, raising further questions regarding the relationship between the genus Brucella and wider Brucellaceae. We have applied whole genome sequencing (WGS) and pan-family multi-locus sequence analysis (MLSA) approaches to a comprehensive panel of Brucellaceae type strains, in order to characterize relationships within the family. Phylogenies based on WGS core genome alignments were able to resolve phylogenetic relationships of 31 non-Brucella spp. type strains from within the family, alongside type strains of twelve Brucella species. A phylogeny based on concatenated pan-family MLSA data was largely consistent with WGS based analyses. Notably, recently described atypical Brucella isolates were consistently placed in a single clade with existing species, clearly distinct from all members of the genus Ochrobactrum and wider family. Both WGS and MLSA methods closely grouped Brucella spp. with a sub-set of Ochrobactrum species. However, results also confirmed that the genus Ochrobactrum is polyphyletic, with seven species forming a separate grouping. The pan-family MLSA scheme was subsequently applied to a panel of 50 field strains of the family Brucellaceae, isolated from a wide variety of sources. This analysis confirmed the utility of the pan-Brucellaceae MLSA scheme in placing field isolates in relation to recognized type strains. However, a significant number of these isolates did not cluster with currently identified type strains, suggesting the existence of additional taxonomic diversity within some members of the Brucellaceae. The WGS and pan-family MLSA approaches applied here provide valuable tools for resolving the identity and phylogenetic relationships of isolates from an expanding bacterial family containing a number of important pathogens.

7.
Pharmaceutics ; 12(8)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824778

ABSTRACT

Bovine tuberculosis (TB) in Great Britain adversely affects animal health and welfare and is a cause of considerable economic loss. The situation is exacerbated by European badgers (Meles meles) acting as a wildlife source of recurrent Mycobacterium bovis infection to cattle. Vaccination of badgers against TB is a possible means to reduce and control bovine TB. The delivery of vaccine in oral bait holds the best prospect for vaccinating badgers over a wide geographical area. There are practical limitations over the volume and concentration of Bacillus of Calmette and Guérin (BCG) that can be prepared for inclusion in bait. The production of BCG in a bioreactor may overcome these issues. We evaluated the efficacy of oral, bioreactor-grown BCG against experimental TB in badgers. We demonstrated repeatable protection through the direct administration of at least 2.0 × 108 colony forming units of BCG to the oral cavity, whereas vaccination via voluntary consumption of bait containing the same preparation of BCG did not result in demonstrable protection at the group-level, although a minority of badgers consuming bait showed immunological responses and protection after challenge equivalent to badgers receiving oral vaccine by direct administration. The need to deliver oral BCG in the context of a palatable and environmentally robust bait appears to introduce such variation in BCG delivery to sites of immune induction in the badger as to render experimental studies variable and inconsistent.

8.
Prev Vet Med ; 180: 105005, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32473415

ABSTRACT

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, represents a major animal health issue. In the United Kingdom and the Republic of Ireland, European badgers (Meles meles) have been shown to act as a reservoir of M. bovis infection, hindering the eradication of bTB in livestock. The availability of suitable diagnostic assays, particularly those that may be applied in a "trap-side" setting, would facilitate the implementation of a wider range of disease control strategies. Here we evaluate the Dual Path Platform (DPP) VetTB assay, a lateral-flow type test for detecting antibodies to M. bovis antigens (MPB83 and ESAT-6/CFP-10). Both serum and whole blood were evaluated as diagnostic samples. Additionally, two methods were evaluated for interpretation of test results (qualitative interpretation by eye and quantitative measurement using an optical reader). The antibody response to MPB83 detected by the DPP VetTB assay increased significantly following experimental M. bovis infection of badgers, whilst the response to ESAT-6/CFP-10 showed no significant change. In sera from TB-free captive and naturally M. bovis infected wild badgers the MPB83 response exhibited a sensitivity of 55 % by eye and quantitative reader (95 % CI: 40-71 and 38-71, respectively), with slightly lower specificity when read by eye (93 % compared to 98 %; 95 % CI: 85-100 and 90-100, respectively). In whole blood, the DPP VetTB assay MPB83 response exhibited a sensitivity of 65 % (95 % CI: 50-80) when interpreted by eye and 53 % (95 % CI: 36-69) using quantitative values, whilst the specificity was 94 % and 98 % respectively (95 % CI: 88-100 and 90-100). Comparison with contemporaneous diagnostic test results from putatively naturally infected and TB-free badgers demonstrated varying levels of agreement. Using sera from naturally M. bovis infected and TB-free badgers, with post mortem confirmation of disease status, the DPP VetTB assay exhibited a sensitivity of 60 % (95 % CI: 41-77) when interpreted using quantitative values (specificity 95 %; 95 % CI: 76-100), and 67 % (95 % CI: 50-84) when read by eye (specificity 95 %; 95 % CI: 86-100). Further work is required to robustly characterize the DPP VetTB assay's performance in a wider selection of samples, and in the practical and epidemiological contexts in which it may be applied.


Subject(s)
Diagnostic Tests, Routine/veterinary , Mustelidae , Mycobacterium bovis/isolation & purification , Tuberculosis/veterinary , Animals , Antibodies, Bacterial , Diagnostic Tests, Routine/methods , England , Tuberculosis/diagnosis
9.
Sci Rep ; 10(1): 7081, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341414

ABSTRACT

Brucellosis is an endemic zoonosis in sub-Saharan Africa. Pastoralists are at high risk of infection but data on brucellosis from these communities are scarce. The study objectives were to: estimate the prevalence of human brucellosis, identify the Brucella spp. causing illness, describe non-Brucella bloodstream infections, and identify risk factors for brucellosis in febrile patients from a pastoralist community of Tanzania. Fourteen (6.1%) of 230 participants enrolled between August 2016 and October 2017 met study criteria for confirmed (febrile illness and culture positivity or ≥four-fold rise in SAT titre) or probable (febrile illness and single SAT titre ≥160) brucellosis. Brucella spp. was the most common bloodstream infection, with B. melitensis isolated from seven participants and B. abortus from one. Enterococcus spp., Escherichia coli, Salmonella enterica, Staphylococcus aureus and Streptococcus pneumoniae were also isolated. Risk factors identified for brucellosis included age and herding, with a greater probability of brucellosis in individuals with lower age and who herded cattle, sheep or goats in the previous 12 months. Disease prevention activities targeting young herders have potential to reduce the impacts of human brucellosis in Tanzania. Livestock vaccination strategies for the region should include both B. melitensis and B. abortus.


Subject(s)
Animal Husbandry , Brucella abortus/isolation & purification , Brucella melitensis/isolation & purification , Brucellosis , Occupational Exposure/adverse effects , Animals , Brucellosis/epidemiology , Brucellosis/microbiology , Brucellosis/prevention & control , Cattle , Female , Goats , Humans , Livestock , Male , Prevalence , Sheep , Tanzania/epidemiology
10.
BMC Vet Res ; 13(1): 131, 2017 May 12.
Article in English | MEDLINE | ID: mdl-28499434

ABSTRACT

BACKGROUND: The European badger is an important wildlife reservoir of Mycobacterium bovis implicated in the spread of bovine tuberculosis in the United Kingdom and Ireland. Infected badgers are known to shed M. bovis in their urine and faeces, which may contaminate the environment. To aid bovine tuberculosis control efforts novel diagnostic tests for detecting infected and shedding badgers are needed. We proposed development of a novel, rapid immunochromatographic lateral flow device (LFD) as a non-invasive test to detect M. bovis cells in badger faeces. Its application in combination with immunomagnetic separation (IMS) to detect Mycobacterium bovis cells in badger faeces is reported here. RESULTS: A novel prototype LFD for M. bovis cells was successfully developed, with unique specificity for M. bovis and a limit of detection 50% (LOD50%) of 1.7 × 104 M. bovis cells/ml. When IMS was employed to selectively capture and concentrate M. bovis cells from badger faeces prior to LFD testing, the LOD50% of the IMS-LFD assay was 2.8 × 105 M. bovis cells/ml faecal homogenate. Faeces samples collected from latrines at badger setts in a region of endemic bovine tuberculosis infection were tested; 78 (18%) of 441 samples tested IMS-LFD assay positive, whereas 140 (32%) tested IMS-qPCR positive (Kappa agreement -0.009 ± 0.044, p = 0.838). Subsequently, when 130 faeces samples from live captured, or captive, badgers of known infection status (on the basis of StatPak, interferon-γ and/or culture results) were tested, the IMS-LFD assay had higher relative diagnostic specificity (Sp 0.926), but poorer relative diagnostic sensitivity (Se 0.081), than IMS-qPCR (Sp 0.706, Se 0.581) and IMS-culture (Sp 0.794, Se 0.436). CONCLUSIONS: The novel IMS-LFD assay, although very specific for M. bovis, has low analytical sensitivity (indicated by the LOD50%) and would only detect badgers shedding high numbers of M. bovis (>104-5 cells/g) in their faeces. The novel LFD would, therefore, have limited value as a non-invasive test for badger TB surveillance purposes but it may have value for alternative veterinary diagnostic applications.


Subject(s)
Chromatography, Affinity/veterinary , Feces/microbiology , Immunomagnetic Separation/veterinary , Mustelidae/microbiology , Mycobacterium bovis/isolation & purification , Animals , Antibodies, Bacterial/analysis , Immunomagnetic Separation/methods , Sensitivity and Specificity
11.
Article in English | MEDLINE | ID: mdl-28174695

ABSTRACT

The European badger (Meles meles) is a reservoir host of Mycobacterium bovis and responsible for a proportion of the tuberculosis (TB) cases seen in cattle in the United Kingdom and Republic of Ireland. An injectable preparation of the bacillus Calmette-Guérin (BCG) vaccine is licensed for use in badgers in the UK and its use forms part of the bovine TB eradication plans of England and Wales. However, there are practical limitations to the widespread application of an injectable vaccine for badgers and a research priority is the development of an oral vaccine deliverable to badgers in bait. Previous studies reported the successful vaccination of badgers with oral preparations of 108 colony forming units (CFU) of both Pasteur and Danish strains of BCG contained within a lipid matrix composed of triglycerides of fatty acids. Protection against TB in these studies was expressed as a reduction in the number and apparent progression of visible lesions, and reductions in the bacterial load and dissemination of infection. To reduce the cost of an oral vaccine and reduce the potential for environmental contamination with BCG, it is necessary to define the minimal efficacious dose of oral BCG for badgers. The objectives of the two studies reported here were to compare the efficacy of BCG Danish strain in a lipid matrix with unformulated BCG given orally, and to evaluate the efficacy of BCG Danish in a lipid matrix at a 10-fold lower dose than previously evaluated in badgers. In the first study, both BCG unformulated and in a lipid matrix reduced the number and apparent progression of visible lesions and the dissemination of infection from the lung. In the second study, vaccination with BCG in the lipid matrix at a 10-fold lower dose produced a similar outcome, but with greater intra-group variability than seen with the higher dose in the first study. Further research is needed before we are able to recommend a final dose of BCG for oral vaccination of badgers against TB or to know whether oral vaccination of wild badgers with BCG will significantly reduce transmission of the disease.


Subject(s)
BCG Vaccine/administration & dosage , BCG Vaccine/immunology , Mustelidae , Mycobacterium bovis/immunology , Tuberculosis/veterinary , Administration, Oral , Animals , Dose-Response Relationship, Immunologic , Treatment Outcome , Tuberculosis/immunology , Tuberculosis/prevention & control , United Kingdom
12.
Analyst ; 138(23): 7188-96, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24135732

ABSTRACT

This work presents an AC electrokinetic impedance sensing method that is capable of detecting specific interactions between macromolecules such as antigen-antibody binding. Serum samples were added to the surface of interdigitated electrodes that had been coated with bacterial antigens. After applying an AC signal of 100 mV at a specific frequency continuously, the electrodes' impedance change was recorded and used to determine the occurrence and level of antibody binding to the antigen. Our theoretical analysis indicated that with this AC signal, the target macromolecules will experience a sufficiently strong attraction force towards the electrode surface for acceleration of the binding process. Using this method, 11 human tuberculosis and 10 bovine tuberculosis serum samples were tested. The results were consistent with those obtained by a conventional ELISA method. The limit of detection of the impedance sensing method was estimated to be better than 10 ng mL(-1). In summary, we demonstrate that AC electrokinetic impedance sensing can be used for rapid and sensitive detection of specific antibodies in serum samples. This method may form a basis for development of a point of care diagnostic device for human and bovine tuberculosis.


Subject(s)
Biosensing Techniques , Immunoassay/methods , Microelectrodes , Tuberculosis/diagnosis , Animals , Cattle , Humans , Sensitivity and Specificity , Tuberculosis/blood , Tuberculosis/veterinary
13.
Vaccine ; 29(21): 3782-90, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21440035

ABSTRACT

Mycobacterium bovis infection is widespread in Eurasian badger (Meles meles) populations in Great Britain and the Republic of Ireland where they act as a wildlife reservoir of infection for cattle. Removal of infected badgers can significantly reduce the incidence of bovine tuberculosis (TB) in local cattle herds. However, control measures based on culling of native wildlife are contentious and may even be detrimental to disease control. Vaccinating badgers with bacillus Calmette-Guerin (BCG) has been shown to be efficacious against experimentally induced TB of badgers when administered subcutaneously and orally. Vaccination may be an alternative or complementary strategy to other disease control measures. As the subcutaneous route is impractical for vaccinating wild badgers and an oral vaccine bait formulation is currently unavailable, we evaluated the intramuscular (IM) route of BCG administration. It has been demonstrated that the IM route is safe in badgers. IM administration has the practical advantage of being relatively easy to perform on trapped wild badgers without recourse to chemical immobilisation. We report the evaluation of the efficacy of IM administration of BCG Danish strain 1331 at two different doses: the dose prescribed for adult humans (2-8×10(5)colony forming units) and a 10-fold higher dose. Vaccination generated a dose-dependent cell-mediated immune response characterised by the production of interferon-γ (IFNγ) and protection against endobronchial challenge with virulent M. bovis. Protection, expressed in terms of a significant reduction in the severity of disease, the number of tissues containing acid-fast bacilli, and reduced bacterial excretion was statistically significant with the higher dose only.


Subject(s)
BCG Vaccine/administration & dosage , Disease Reservoirs/microbiology , Mustelidae/microbiology , Mycobacterium bovis/isolation & purification , Tuberculosis/veterinary , Animals , Female , Immunity, Cellular , Injections, Intramuscular/veterinary , Interferon-gamma/blood , Interferon-gamma/immunology , Male , Mycobacterium bovis/immunology , Tuberculosis/immunology , Tuberculosis/pathology , Tuberculosis/prevention & control , Vaccination/veterinary
14.
Proc Biol Sci ; 278(1713): 1913-20, 2011 Jun 22.
Article in English | MEDLINE | ID: mdl-21123260

ABSTRACT

Control of bovine tuberculosis (TB) in cattle has proven particularly challenging where reservoirs of infection exist in wildlife populations. In Britain and Ireland, control is hampered by a reservoir of infection in Eurasian badgers (Meles meles). Badger culling has positive and negative effects on bovine TB in cattle and is difficult, costly and controversial. Here we show that Bacillus Calmette-Guérin (BCG) vaccination of captive badgers reduced the progression, severity and excretion of Mycobacterium bovis infection after experimental challenge. In a clinical field study, BCG vaccination of free-living badgers reduced the incidence of positive serological test results by 73.8 per cent. In common with other species, BCG did not appear to prevent infection of badgers subjected to experimental challenge, but did significantly reduce the overall disease burden. BCG vaccination of badgers could comprise an important component of a comprehensive programme of measures to control bovine TB in cattle.


Subject(s)
BCG Vaccine/therapeutic use , Disease Reservoirs/veterinary , Mustelidae/immunology , Tuberculosis, Bovine/prevention & control , Animals , BCG Vaccine/immunology , Cattle , England , Mustelidae/blood , Mustelidae/microbiology , Mycobacterium bovis/immunology , Mycobacterium bovis/pathogenicity , Tuberculosis, Bovine/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...