Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabet Med ; 39(12): e14978, 2022 12.
Article in English | MEDLINE | ID: mdl-36245259

ABSTRACT

BACKGROUND: Adipose tissue mass expansion in obesity leads to alterations in expression and secretion of adipokines, some of which may alter islet function by binding to G-protein-coupled receptors (GPCRs) expressed by islets. We have therefore quantified expression of mRNAs encoding islet GPCR ligands in visceral adipose tissue retrieved from lean and diet-induced obese mice to determine alterations in islet GPCR ligand mRNAs in obesity. METHODS: Epididymal adipose tissue was retrieved from C57BL/6 mice that had been maintained on a control-fat diet (10% fat) or high-fat diet (60% fat) for 16 weeks and RT-qPCR was used to quantify mRNAs encoding ligands for islet GPCRs. RESULTS: Of the 155 genes that encode ligands for islet GPCRs, 45 and 40 were expressed in visceral adipose tissue retrieved from lean and obese mice respectively. The remaining mRNAs were either expressed at trace level (0.0001% to 0.001% relative to Actb expression) or absent (<0.0001%). Obesity was associated with significant alterations in GPCR ligand mRNA expression in visceral adipose tissue, some of which encode for peptides with established effects on islet function (e.g. neuropeptide Y), or for GPCR ligands that have not previously been investigated for their effects on islets (e.g. (C-C motif) ligand 4; Ccl4). CONCLUSION: Mouse visceral adipose tissue showed significant alterations in expression of mRNAs encoding islet GPCR ligands in obesity. Our data point to ligands of interest for future research on adipose-islet crosstalk via secreted ligands acting at islet GPCRs. Such research may identify islet GPCRs with therapeutic potential for T2D.


Subject(s)
Intra-Abdominal Fat , Receptors, G-Protein-Coupled , Mice , Humans , Animals , Ligands , Mice, Obese , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Mice, Inbred C57BL , Obesity/genetics , Obesity/metabolism , Adipose Tissue/metabolism , RNA, Messenger/metabolism
2.
Mol Pharmacol ; 100(4): 319-334, 2021 10.
Article in English | MEDLINE | ID: mdl-34315812

ABSTRACT

The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor and mainstay therapeutic target for the treatment of type 2 diabetes and obesity. Recent reports have highlighted how biased agonism at the GLP-1R affects sustained glucose-stimulated insulin secretion through avoidance of desensitization and downregulation. A number of GLP-1R agonists (GLP-1RAs) feature a fatty acid moiety to prolong their pharmacokinetics via increased albumin binding, but the potential for these chemical changes to influence GLP-1R function has rarely been investigated beyond potency assessments for cAMP. Here, we directly compare the prototypical GLP-1RA exendin-4 with its C-terminally acylated analog, exendin-4-C16. We examine relative propensities of each ligand to recruit and activate G proteins and ß-arrestins, endocytic and postendocytic trafficking profiles, and interactions with model and cellular membranes in HEK293 and HEK293T cells. Both ligands had similar cAMP potency, but exendin-4-C16 showed ∼2.5-fold bias toward G protein recruitment and a ∼60% reduction in ß-arrestin-2 recruitment efficacy compared with exendin-4, as well as reduced GLP-1R endocytosis and preferential targeting toward recycling pathways. These effects were associated with reduced movement of the GLP-1R extracellular domain measured using a conformational biosensor approach and a ∼70% increase in insulin secretion in INS-1 832/3 cells. Interactions with plasma membrane lipids were enhanced by the acyl chain. Exendin-4-C16 showed extensive albumin binding and was highly effective for lowering of blood glucose in mice over at least 72 hours. Our study highlights the importance of a broad approach to the evaluation of GLP-1RA pharmacology. SIGNIFICANCE STATEMENT: Acylation is a common strategy to enhance the pharmacokinetics of peptide-based drugs. This work shows how acylation can also affect various other pharmacological parameters, including biased agonism, receptor trafficking, and interactions with the plasma membrane, which may be therapeutically important.


Subject(s)
Exenatide/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Incretins/metabolism , Signal Transduction/physiology , Acylation/drug effects , Acylation/physiology , Animals , Exenatide/pharmacology , HEK293 Cells , Humans , Incretins/pharmacology , Insulin Secretion/drug effects , Insulin Secretion/physiology , Male , Mice , Mice, Inbred C57BL , Protein Transport/drug effects , Protein Transport/physiology , Signal Transduction/drug effects
3.
Pharmacol Ther ; 228: 107928, 2021 12.
Article in English | MEDLINE | ID: mdl-34174278

ABSTRACT

G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that are the targets for many different classes of pharmacotherapy. The islets of Langerhans are central to appropriate glucose homeostasis through their secretion of insulin, and islet function can be modified by ligands acting at the large number of GPCRs that islets express. The human islet GPCRome is not a static entity, but one that is altered under pathophysiological conditions and, in this review, we have compared expression of GPCR mRNAs in human islets obtained from normal weight range donors, and those with a weight range classified as obese. We have also considered the likely outcomes on islet function that the altered GPCR expression status confers and the possible impact that adipokines, secreted from expanded fat depots, could have at those GPCRs showing altered expression in obesity.


Subject(s)
Islets of Langerhans , Obesity , Receptors, G-Protein-Coupled , Humans , Islets of Langerhans/metabolism , Obesity/complications , Obesity/metabolism , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...