Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Nutr Biochem ; 23(4): 341-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21543214

ABSTRACT

The exposure to an increased supply of nutrients before birth may contribute to offspring obesity. Offspring from obese dams that chronically consume a high-fat diet present clinical features of metabolic syndrome, liver lipid accumulation and activation of c-Jun N-terminal kinases (JNK) consistent with the development of nonalcoholic fatty liver disease (NAFLD). However, in spite of the importance of the resistance to insulin for the development of NAFLD, the molecular alterations in the liver of adult offspring of obese dams are yet to be investigated. In this study, we tested the hypothesis that the consumption of excessive saturated fats during pregnancy and lactation contributes to adult hepatic metabolic dysfunction in offspring. Adult male offspring of dams fed a high-fat diet (HN) during pregnancy and lactation exhibited increased fat depot weight; increased serum insulin, tumor necrosis factor α and interleukin 1ß; and reduced serum triglycerides. Liver showed increased JNK and I kappa B kinase phosphorylation and PEPCK expression in the adult. In addition, liver triglyceride content in the offspring 1 week after weaning and in the adult was increased. Moreover, basal ACC phosphorylation and insulin signaling were reduced in the liver from the HN group as compared to offspring of dams fed a standard laboratory chow (NN). Hormone-sensitive lipase phosphorylation (Ser565) was reduced in epididymal adipose tissue from the HN group as compared to the NN group. It is interesting that all changes observed were independent of postweaning diet in 14-week-old offspring. Therefore, these data further reinforce the importance of maternal nutrition to adult offspring health.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Liver/etiology , Insulin Resistance , Lactation , Maternal Nutritional Physiological Phenomena , Obesity/physiopathology , Adipose Tissue/metabolism , Animals , Fatty Liver/physiopathology , Female , I-kappa B Kinase/metabolism , Insulin/blood , Interleukin-1beta , JNK Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Liver/pathology , Male , Mice , Obesity/etiology , Phosphorylation , Pregnancy , Sterol Esterase/metabolism , Triglycerides/blood , Tumor Necrosis Factor-alpha/blood , Weaning
2.
Exp Biol Med (Maywood) ; 236(10): 1147-55, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21844120

ABSTRACT

Hydroalcoholic extract of Solidago chilensis (Sc) is employed in popular medicine to treat inflammatory disease. The low-grade proinflammatory state and the activation of serine/threonine kinases in adipose tissue, like c-jun kinase (JNK) and IKK, and transcription factors, have an important role in obesity-associated insulin resistance. The aim of this study was to further investigate the effects of the Sc extract on glucose homeostasis in diet-induced obesity mice. Male Swiss mice were randomized to three groups: a control group (C) fed with standard laboratory chow; a group with an experimental high-fat diet (HFD); and a group fed with a high-fat (45% kcal from fat) diet + extract of Sc (via intraperitoneal, 3 mg/kg) (ScHFD). The dietary treatment lasted for eight weeks. Subsequently, the expression and phosphorylation of proteins of interest in the liver, hypothalamus and skeletal muscle were evaluated by Western blot analysis. Body weight, epididymal fat pad mass and liver triglycerides were higher in HFD than in control mice, but these parameters were reduced by intraperitoneal administration of the extracts (3 mg/kg) to the HFD group. AKT phosphorylation stimulated by insulin in the liver, hypothalamus and skeletal muscle was higher in ScHFD as compared with HFD mice. Additionally, liver expression of phosphoenolpyruvate carboxykinase (PEPCK) and fatty acid synthase were lower in ScHFD as compared with HFD mice. Nuclear factor κB, p-IκB and p-JNK levels were higher in HFD when compared with control mice, but they were lowered by treatment with extract (ScHFD). In addition, in db/db mice, Sc extract also improved liver AKT phosphorylation stimulated by insulin and reduced PEPCK expression. The data presented herein show that Sc improves AKT activation. This effect may be promoted by reduction of the proinflammatory pathway in the liver and hypothalamus. Therefore, systemic action of the Sc components may contribute to improve obesity-associated pathophysiology.


Subject(s)
I-kappa B Proteins/metabolism , Insulin Resistance , JNK Mitogen-Activated Protein Kinases/metabolism , Obesity/metabolism , Plant Extracts/therapeutic use , Solidago , Animals , Glucose/analysis , Glucose Tolerance Test , I-kappa B Proteins/drug effects , JNK Mitogen-Activated Protein Kinases/drug effects , Liver/chemistry , Liver/metabolism , Liver Glycogen/analysis , Male , Mice , Signal Transduction/drug effects , Triglycerides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...