Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 70(3): 346-57, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16283296

ABSTRACT

To construct yeast strains showing tolerance to high salt concentration stress, we analyzed the transcriptional response to high NaCl concentration stress in the yeast Saccharomyces cerevisiae using DNA microarray and compared between two yeast strains, a laboratory strain and a brewing one, which is known as a stress-tolerant strain. Gene expression dynamically changed following the addition of NaCl in both yeast strains, but the degree of change in the gene expression level in the laboratory strain was larger than that in the brewing strain. The response of gene expression to the low NaCl concentration stress was faster than that to the high NaCl concentration stress in both strains. Expressions of the genes encoding enzymes involved in carbohydrate metabolism and energy production in both strains or amino acid metabolism in the brewing strain were increased under high NaCl concentration conditions. Moreover, the genes encoding sodium ion efflux pump and copper metallothionein proteins were more highly expressed in the brewing strain than in the laboratory strain. According to the results of transcriptome analysis, candidate genes for the creation of stress-tolerant strain were selected, and the effect of overexpression of candidate genes on the tolerance to high NaCl concentration stress was evaluated. Overexpression of the GPD1 gene encoding glycerol-3-phosphate dehydrogenase, ENA1 encoding sodium ion efflux protein, and CUP1 encoding copper metallothionein conferred high salt stress tolerance to yeast cells, and our selection of candidate genes for the creation of stress-tolerant yeast strains based on the transcriptome data was validated.


Subject(s)
Heat-Shock Response , Oligonucleotide Array Sequence Analysis/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Sodium Chloride/pharmacology , Gene Expression Regulation, Fungal , Laboratories , Oryza/metabolism , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic , Wine/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...