Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 14880, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050381

ABSTRACT

Combining genetic heterogeneity and crop homogeneity serves a dual purpose: disease control and maintaining harvest quality. Multilines, which consist of a genetically uniform mixture of plants, have the potential to suppress disease while maintaining eating quality, yet practical methods that facilitate commercial use over large geographical areas are lacking. Here, we describe effective rice multiline management based on seed mixture composition changes informed by monitoring virulent blast races in Niigata Prefecture, Japan. The most elite nonglutinous cultivar, Koshihikari, was converted into the multiline, Koshihikari BL (blast resistant lines) and planted on 94,000 ha in 2005. The most destructive rice disease, blast, was 79.4% and 81.8% less severe in leaves and panicles, respectively, during the 2005-2019 period compared to the year 2004. In addition, fungicidal application was reduced by two-thirds after the introduction of BL. Our results suggest that seed mixture diversification and rotation of resistant BL provides long-term disease control by avoiding virulent race evolution.


Subject(s)
Magnaporthe , Oryza , Japan , Oryza/genetics , Plant Diseases/genetics , Plant Diseases/prevention & control , Plant Leaves
2.
Plant J ; 85(1): 46-56, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26603141

ABSTRACT

The hypersensitive response (HR) of plants is one of the earliest responses to prevent pathogen invasion. A brown dot lesion on a leaf is visual evidence of the HR against the blast fungus Magnaporthe oryzae in rice, but tracking the browning process has been difficult. In this study, we induced the HR in rice cultivars harboring the blast resistance gene Pit by inoculation of an incompatible M. oryzae strain, which generated a unique resistance lesion with a brown ring (halo) around the brown fungal penetration site. Inoculation analysis using a plant harboring Pit but lacking an enzyme that catalyzes tryptamine to serotonin showed that high accumulation of the oxidized form of serotonin was the cause of the browning at the halo and penetration site. Our analysis of the halo browning process in the rice leaf revealed that abscisic acid enhanced biosynthesis of serotonin under light conditions, and serotonin changed to the oxidized form via hydrogen peroxide produced by light. The dramatic increase in serotonin, which has a high antioxidant activity, suppressed leaf damage outside the halo, blocked expansion of the browning area and attenuated inhibition of plant growth. These results suggest that serotonin helps to reduce biotic stress in the plant by acting as a scavenger of oxygen radicals to protect uninfected tissues from oxidative damage caused by the HR. The deposition of its oxide at the HR lesion is observed as lesion browning.


Subject(s)
Abscisic Acid/metabolism , Magnaporthe/physiology , Oryza/physiology , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Serotonin/metabolism , Host-Pathogen Interactions , Hydrogen Peroxide/metabolism , Oryza/genetics , Oryza/immunology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/physiology , Reactive Oxygen Species/metabolism , Stress, Physiological
3.
Rice (N Y) ; 7(1): 2, 2014.
Article in English | MEDLINE | ID: mdl-24920970

ABSTRACT

BACKGROUND: Rice blast is a destructive disease caused by Magnaporthe oryzae, and it has a large impact on rice production worldwide. Compared with leaf blast resistance, our understanding of panicle blast resistance is limited, with only one panicle blast resistance gene, Pb1, isolated so far. The japonica cultivar Miyazakimochi shows resistance to panicle blast, yet the genetic components accounting for this resistance remain to be determined. RESULTS: In this study, we evaluated the panicle blast resistance of populations derived from a cross between Miyazakimochi and the Bikei 22 cultivar, which is susceptible to both leaf and panicle blast. The phenotypic analyses revealed no correlation between panicle blast resistance and leaf blast resistance. Quantitative trait locus (QTL) analysis of 158 recombinant inbred lines using 112 developed genome-wide and 35 previously reported polymerase chain reaction (PCR) markers revealed the presence of two QTLs conferring panicle blast resistance in Miyazakimochi: a major QTL, qPbm11, on chromosome 11; and a minor QTL, qPbm9, on chromosome 9. To clarify the contribution of these QTLs to panicle blast resistance, 24 lines homozygous for each QTL were selected from 2,818 progeny of a BC2F7 backcrossed population, and characterized for disease phenotypes. The panicle blast resistance of the lines harboring qPbm11 was very similar to the resistant donor parental cultivar Miyazakimochi, whereas the contribution of qPbm9 to the resistance was small. Genotyping of the BC2F7 individuals highlighted the overlap between the qPbm11 region and a locus of the panicle blast resistance gene, Pb1. Reverse transcriptase PCR analysis revealed that the Pb1 transcript was absent in the panicles of Miyazakimochi, demonstrating that qPbm11 is a novel genetic component of panicle blast resistance. CONCLUSIONS: This study revealed that Miyazakimochi harbors a novel panicle blast resistance controlled mainly by the major QTL qPbm11. qPbm11 is distinct from Pb1 and could be a genetic source for breeding panicle blast resistance, and will improve understanding of the molecular basis of host resistance to panicle blast.

4.
Phytopathology ; 100(6): 612-8, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20465417

ABSTRACT

We analyzed the avirulence gene AVR-Pita1 in Japanese rice blast isolates to determine how they gain virulence toward rice cultivars containing the Pita resistance gene. An avirulent isolate, OS99-G-7a (G7a), from a Japanese commercial field contained two paralogs of AVR-Pita1, designated as AVR-Pita1(JA) and AVR-Pita1(JB). Analysis of virulent, independent mutants derived from G7a, a single avirulent progenitor strain, indicated that AVR-Pita1(JA) was functional but AVR-Pita1(JB) was nonfunctional. The most frequent mutation was loss of AVR-Pita1(JA). Analyses of field isolates collected from diverse areas in Japan revealed that most of the AVR-Pita1 genes carried by Japanese isolates were identical to AVR-Pita1(JA) or AVR-Pita1(JB). The relationship between these major paralogs in Japanese isolates and the virulence of the strains carrying them indicate that AVR-Pita1(JA) is functional but AVR-Pita1(JB) is not, as is the case in G7a. Isolates that show virulence toward rice cultivars containing the Pita gene are presumed to have evolved virulence from avirulent origins via loss of AVR-Pita1(JA), except for one case in which virulence resulted from a base substitution. In this study, we discuss the properties and specificities of Japanese rice blasts that relate to virulence against Pita-containing rice. Furthermore, we present a method to amplify AVR-Pita1(JA) and AVR-Pita1(JB) separately and, specifically, to monitor functional AVR-Pita1 in Japan.


Subject(s)
Host-Pathogen Interactions , Magnaporthe/pathogenicity , Oryza/microbiology , Genes, Bacterial , Genes, Plant , Japan , Magnaporthe/genetics , Mutation , Oryza/genetics , Oryza/immunology , Polymerase Chain Reaction , Virulence
5.
Mol Plant Pathol ; 10(3): 361-74, 2009 May.
Article in English | MEDLINE | ID: mdl-19400839

ABSTRACT

In order to clone and analyse the avirulence gene AVR-Pia from Japanese field isolates of Magnaporthe oryzae, a mutant of the M. oryzae strain Ina168 was isolated. This mutant, which was named Ina168m95-1, gained virulence towards the rice cultivar Aichi-asahi, which contains the resistance gene Pia. A DNA fragment (named PM01) that was deleted in the mutant and that co-segregated with avirulence towards Aichi-asahi was isolated. Three cosmid clones that included the regions that flanked PM01 were isolated from a genomic DNA library. One of these clones (46F3) complemented the mutant phenotype, which indicated clearly that this clone contained the avirulence gene AVR-Pia. Clone 46F3 contained insertions of transposable elements. The 46F3 insert was divided into fragments I-VI, and these were cloned individually into a hygromycin-resistant vector for the transformation of the mutant Ina168m95-1. An inoculation assay of the transformants revealed that fragment V (3.5 kb) contained AVR-Pia. By deletion analysis of fragment V, AVR-Pia was localized to an 1199-bp DNA fragment, which included a 255-bp open reading frame with weak homology to a bacterial cytochrome-c-like protein. Restriction fragment length polymorphism analysis of this region revealed that this DNA sequence co-segregated with the AVR-Pia locus in a genetic map that was constructed using Chinese isolates.


Subject(s)
Agriculture , Genes, Fungal , Magnaporthe/genetics , Magnaporthe/isolation & purification , Oryza/microbiology , Base Pairing/genetics , Base Sequence , Chromosome Segregation , Cloning, Molecular , Conserved Sequence , Cosmids , Crosses, Genetic , DNA, Fungal/genetics , Genetic Complementation Test , Japan , Magnaporthe/pathogenicity , Molecular Sequence Data , Open Reading Frames/genetics , Phenotype , Random Amplified Polymorphic DNA Technique , Sequence Deletion , Transformation, Genetic , Virulence
6.
Plant Physiol ; 150(1): 308-19, 2009 May.
Article in English | MEDLINE | ID: mdl-19286937

ABSTRACT

Phospholipase D (PLD) plays an important role in plants, including responses to abiotic as well as biotic stresses. A survey of the rice (Oryza sativa) genome database indicated the presence of 17 PLD genes in the genome, among which OsPLDalpha1, OsPLDalpha5, and OsPLDbeta1 were highly expressed in most tissues studied. To examine the physiological function of PLD in rice, we made knockdown plants for each PLD isoform by introducing gene-specific RNA interference constructs. One of them, OsPLDbeta1-knockdown plants, showed the accumulation of reactive oxygen species in the absence of pathogen infection. Reverse transcription-polymerase chain reaction and DNA microarray analyses revealed that the knockdown of OsPLDbeta1 resulted in the up-/down-regulation of more than 1,400 genes, including the induction of defense-related genes such as pathogenesis-related protein genes and WRKY/ERF family transcription factor genes. Hypersensitive response-like cell death and phytoalexin production were also observed at a later phase of growth in the OsPLDbeta1-knockdown plants. These results indicated that the OsPLDbeta1-knockdown plants spontaneously activated the defense responses in the absence of pathogen infection. Furthermore, the OsPLDbeta1-knockdown plants exhibited increased resistance to the infection of major pathogens of rice, Pyricularia grisea and Xanthomonas oryzae pv oryzae. These results suggested that OsPLDbeta1 functions as a negative regulator of defense responses and disease resistance in rice.


Subject(s)
Oryza/genetics , Phospholipase D/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Immunity, Innate/genetics , Multigene Family , Oryza/enzymology , Oryza/microbiology , Phenotype , Phospholipase D/chemistry , Phospholipase D/physiology , Phylogeny , Plant Proteins/chemistry , Plant Proteins/physiology , Plants, Genetically Modified/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/physiology , Reactive Oxygen Species/metabolism , Sesquiterpenes , Terpenes/metabolism , Up-Regulation , Phytoalexins
SELECTION OF CITATIONS
SEARCH DETAIL
...