Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nanomedicine ; 17: 3543-3560, 2022.
Article in English | MEDLINE | ID: mdl-35983479

ABSTRACT

Purpose: The aim of this work was to probe cubosomes for enhanced intestinal absorption and oral bioavailability of poorly absorbable fexofenadine HCl (FEX-HCl). Materials and Methods: Two cubosomal systems were fabricated utilizing glyceryl mono-oleate, a lyotropic mono lamellar lipid as oil phase and poloxamer407 as stabilizer at weight ratios of 8:2 and 7:3. The morphology of cubosomes was researched using transmission electron microscopy (TEM) and particle size was measured using photon correlation spectroscopy. FEX-HCl release was monitored in vitro. The effect of cubosomal encapsulation on intestinal absorption was assessed using in situ rabbit intestinal perfusion technique. Carrageenan induced rat paw edema model was utilized to monitor in vivo anti-inflammatory effect before and after cubosomal encapsulation. Results: TEM revealed the existence of spherical and polygonal nanostructures arranged in honeycomb organization. Size measurement reflected nanoparticles with reduced size at higher poloxamer concentration. Release studies revealed liberation of FEX-HCl from cubosomes based on Higuchi kinetics model. The intestinal permeability data indicated incomplete absorption of FEX-HCl from simple aqueous solution with P-glycoprotein efflux contributing to this poor intestinal absorption. Incorporation of FEX-HCl in cubosomes enhanced membrane transport parameters. The intestinal absorption did not correlate with drug release suggesting that drug release is not the rate limiting with possible intact cubosomal transport. Cubosomal encapsulation of FEX-HCl significantly enhanced its in vivo anti-inflammatory efficacy compared to the aqueous FEX-HCl dispersion. Conclusion: Cubosomes are promising novel carriers for enhancing intestinal absorption of FEX-HCl. Intact FEX-HCl-cubosomal absorption is possible via trans-lymphatic pathway but this requires further investigations.


Subject(s)
Intestinal Absorption , Terfenadine , Animals , Drug Liberation , Particle Size , Poloxamer/chemistry , Rabbits , Rats , Terfenadine/analogs & derivatives , Terfenadine/chemistry
2.
Daru ; 30(1): 49-58, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35023081

ABSTRACT

PURPOSE: Sofosbuvir, a nucleotide antiviral drug, is a Biopharmaceutics Classification System (BCS) class III prodrug suffering from limited intestinal absorption due to its high hydrophilicity and low intestinal permeability. This research aims to investigate the luminal stability of Sofosbuvir, the influence of anatomical site on its intestinal absorption and the effects of verapamil on such absorption. METHOD: The study utilized in situ rabbit intestinal perfusion technique to examine absorption of Sofosbuvir from duodenum, jejunum, ileum and ascending colon. This was conducted both with and without verapamil. RESULTS: The luminal stability study showed that Sofosbuvir was subjected to premature degradation with varying fractions degraded from the different intestinal segments. The in situ perfusion data showed incomplete absorption of Sofosbuvir from small and large intestinal segments. The recorded values of the absorptive clearance per unit length (Pe.A/L) of Sofosbuvir were 0.026, 0.0075, 0.0026, & 0.054 ml/min.cm for duodenum, jejunum, ileum, and ascending colon, respectively. The Pe.A/L values were ordered as colon > duodenum > jejunum > ileum. This is the opposite rank of P-gp content in the different intestinal segments. The recorded values of the length required for complete Sofosbuvir absorption (L95%) were 29.58, 128.47, 949.2 and, 13.63 cm for duodenum, jejunum, ileum, and ascending colon, respectively. Co-perfusion with verapamil significantly increased Pe.A/L and reduced the L95% of Sofosbuvir from both jejunum and ileum (P-value < 0.05). CONCLUSION: The results indicated that the absorptive clearance of Sofosbuvir was site dependent and associated with the content of P-glycoprotein, in addition to the expected drug interactions that can occur in polymedicated hepatitis C virus (HCV) infected patients.


Subject(s)
Sofosbuvir , Verapamil , Animals , Humans , Intestinal Absorption , Intestines , Jejunum/metabolism , Rabbits , Sofosbuvir/pharmacology , Verapamil/metabolism , Verapamil/pharmacology
3.
Biopharm Drug Dispos ; 43(1): 33-44, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34997607

ABSTRACT

The study assessed the site dependent intestinal absorption of Daclatasvir and investigated the effects of piperine and omeprazole on such absorption utilizing in situ rabbit intestinal perfusion technique. The intestinal absorption of Daclatasvir was assessed in four segments: duodenum, jejunum, ileum, and colon. The effect of co-perfusion with omeprazole was monitored through the tested anatomical sites. The effect of piperine, a P-glycoprotein (P-gp) inhibitor on Daclatasvir absorption from jejunum and ileum was tested. The results showed that Daclatasvir was incompletely absorbed from the rabbit small and large intestine. The absorptive clearance per unit length (PeA/L) was site dependent and was ranked as colon > duodenum > jejunum > ileum. This rank is the opposite of the rank of P-gp intestinal content suggesting possible influence for P-gp. Co-perfusion with omeprazole increased PeA/L and this was evidenced also with reduced the L95% of Daclatasvir from both small and large intestinal segments. Significant enhancement in Daclatasvir absorption through jejunum and ileum was shown in presence of piperine. Daclatasvir showed site dependent intestinal absorption in a manner suggesting its affection by P-gp efflux. This effect was inhibited by piperine. Co-administration of Daclatasvir with omeprazole can enhance intestinal absorption a phenomenon which requires extension to human pharmacokinetic investigation.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Omeprazole , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Alkaloids , Animals , Benzodioxoles , Carbamates , Ileum/metabolism , Imidazoles , Intestinal Absorption , Intestines , Jejunum/metabolism , Omeprazole/pharmacology , Piperidines , Polyunsaturated Alkamides , Pyrrolidines , Rabbits , Valine/analogs & derivatives
4.
J Pharm Pharmacol ; 71(3): 362-370, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30362574

ABSTRACT

OBJECTIVES: The aim of this research was to assess regional difference in the intestinal absorption of ranitidine HCl as an indicator for the potential effect of P-glycoprotein (P-gp) efflux transporters. METHODS: In situ rabbit intestinal perfusion was used to investigate absorption of ranitidine HCl, a substrate for P-gp efflux from duodenum, jejunum, ileum and colon. This was conducted both in the presence and absence of piperine as P-gp inhibitor. KEY FINDINGS: Ranitidine HCl was incompletely absorbed from rabbit intestine. The length normalized absorptive clearance (PeA/L) of ranitidine HCl was ranked as colon > duodenum > jejunum > ileum. This is the reverse order of the magnitude of P-gp expression. Coperfusion of piperine with ranitidine HCl significantly increased the PeA/L of ranitidine HCl from jejunum and ileum with no significant change on the absorption from duodenum and colon. This was confirmed by significant reduction in the length required for complete ranitidine HCl absorption from jejunum and ileum in presence piperine. CONCLUSIONS: The results indicate that P-gp transporters play a major role in determining regional difference in intestinal absorption of ranitidine HCl. Thus, the regional absorption of drugs may be taken as an indirect indication for the role of P-gp in intestinal absorption.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Intestinal Absorption/drug effects , Intestinal Mucosa/metabolism , Intestines/drug effects , Membrane Transport Proteins/metabolism , Alkaloids/metabolism , Animals , Benzodioxoles/metabolism , Piperidines/metabolism , Polyunsaturated Alkamides/metabolism , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...