Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Environ Int ; 145: 106155, 2020 12.
Article in English | MEDLINE | ID: mdl-33027737

ABSTRACT

Low- and middle-income countries have the largest health burdens associated with air pollution exposure, and are particularly vulnerable to climate change impacts. Substantial opportunities have been identified to simultaneously improve air quality and mitigate climate change due to overlapping sources of greenhouse gas and air pollutant emissions and because a subset of pollutants, short-lived climate pollutants (SLCPs), directly contribute to both impacts. However, planners in low- and middle-income countries often lack practical tools to quantify the air pollution and climate change impacts of different policies and measures. This paper presents a modelling framework implemented in the Low Emissions Analysis Platform - Integrated Benefits Calculator (LEAP-IBC) tool to develop integrated strategies to improve air quality, human health and mitigate climate change. The framework estimates emissions of greenhouse gases, SLCPs and air pollutants for historical years, and future projections for baseline and mitigation scenarios. These emissions are then used to quantify i) population-weighted annual average ambient PM2.5 concentrations across the target country, ii) household PM2.5 exposure of different population groups living in households cooking using different fuels/technologies and iii) radiative forcing from all emissions. Health impacts (premature mortality) attributable to ambient and household PM2.5 exposure and changes in global average temperature change are then estimated. This framework is applied in Bangladesh to evaluate the air quality and climate change benefits from implementation of Bangladesh's Nationally Determined Contribution (NDC) and National Action Plan to reduce SLCPs. Results show that the measures included to reduce GHGs in Bangladesh's NDC also have substantial benefits for air quality and human health. Full implementation of Bangladesh's NDC, and National SLCP Plan would reduce carbon dioxide, methane, black carbon and primary PM2.5 emissions by 25%, 34%, 46% and 45%, respectively in 2030 compared to a baseline scenario. These emission reductions could reduce population-weighted ambient PM2.5 concentrations in Bangladesh by 18% in 2030, and avoid approximately 12,000 and 100,000 premature deaths attributable to ambient and household PM2.5 exposures, respectively, in 2030. As countries are simultaneously planning to achieve the climate goals in the Paris Agreement, improve air quality to reduce health impacts and achieve the Sustainable Development Goals, the LEAP-IBC tool provides a practical framework by which planners can develop integrated strategies, achieving multiple air quality and climate benefits.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Bangladesh , Climate Change , Humans , Paris , Particulate Matter/analysis
2.
Environ Health Perspect ; 125(8): 087021, 2017 08 28.
Article in English | MEDLINE | ID: mdl-28858826

ABSTRACT

BACKGROUND: Relative risk estimates for long-term ozone (O3) exposure and respiratory mortality from the American Cancer Society Cancer Prevention Study II (ACS CPS-II) cohort have been used to estimate global O3-attributable mortality in adults. Updated relative risk estimates are now available for the same cohort based on an expanded study population with longer follow-up. OBJECTIVES: We estimated the global burden and spatial distribution of respiratory mortality attributable to long-term O3 exposure in adults ≥30y of age using updated effect estimates from the ACS CPS-II cohort. METHODS: We used GEOS-Chem simulations (2×2.5º grid resolution) to estimate annual O3 exposures, and estimated total respiratory deaths in 2010 that were attributable to long-term annual O3 exposure based on the updated relative risk estimates and minimum risk thresholds set at the minimum or fifth percentile of O3 exposure in the most recent CPS-II analysis. These estimates were compared with attributable mortality based on the earlier CPS-II analysis, using 6-mo average exposures and risk thresholds corresponding to the minimum or fifth percentile of O3 exposure in the earlier study population. RESULTS: We estimated 1.04-1.23 million respiratory deaths in adults attributable to O3 exposures using the updated relative risk estimate and exposure parameters, compared with 0.40-0.55 million respiratory deaths attributable to O3 exposures based on the earlier CPS-II risk estimate and parameters. Increases in estimated attributable mortality were larger in northern India, southeast China, and Pakistan than in Europe, eastern United States, and northeast China. CONCLUSIONS: These findings suggest that the potential magnitude of health benefits of air quality policies targeting O3, health co-benefits of climate mitigation policies, and health implications of climate change-driven changes in O3 concentrations, are larger than previously thought. https://doi.org/10.1289/EHP1390.


Subject(s)
Air Pollutants/toxicity , Environmental Exposure , Ozone/toxicity , Respiratory Tract Diseases/chemically induced , Respiratory Tract Diseases/mortality , Adult , Aged , Aged, 80 and over , Global Health , Humans , Middle Aged , Risk
3.
Environ Int ; 101: 173-182, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28196630

ABSTRACT

Reduction of preterm births (<37 completed weeks of gestation) would substantially reduce neonatal and infant mortality, and deleterious health effects in survivors. Maternal fine particulate matter (PM2.5) exposure has been identified as a possible risk factor contributing to preterm birth. The aim of this study was to produce the first estimates of ambient PM2.5-associated preterm births for 183 individual countries and globally. To do this, national, population-weighted, annual average ambient PM2.5 concentration, preterm birth rate and number of livebirths were combined to calculate the number of PM2.5-associated preterm births in 2010 for 183 countries. Uncertainty was quantified using Monte-Carlo simulations, and analyses were undertaken to investigate the sensitivity of PM2.5-associated preterm birth estimates to assumptions about the shape of the concentration-response function at low and high PM2.5 exposures, inclusion of provider-initiated preterm births, and exposure to indoor air pollution. Globally, in 2010, the number of PM2.5-associated preterm births was estimated as 2.7 million (1.8-3.5 million, 18% (12-24%) of total preterm births globally) with a low concentration cut-off (LCC) set at 10µgm-3, and 3.4 million (2.4-4.2 million, 23% (16-28%)) with a LCC of 4.3µgm-3. South and East Asia, North Africa/Middle East and West sub-Saharan Africa had the largest contribution to the global total, and the largest percentage of preterm births associated with PM2.5. Sensitivity analyses showed that PM2.5-associated preterm birth estimates were 24% lower when provider-initiated preterm births were excluded, 38-51% lower when risk was confined to the PM2.5 exposure range in the studies used to derive the effect estimate, and 56% lower when mothers who live in households that cook with solid fuels (and whose personal PM2.5 exposure is likely dominated by indoor air pollution) were excluded. The concentration-response function applied here derives from a meta-analysis of studies, most of which were conducted in the US and Europe, and its application to the areas of the world where we estimate the greatest effects on preterm births remains uncertain. Nevertheless, the substantial percentage of preterm births estimated to be associated with anthropogenic PM2.5 (18% (13%-24%) of total preterm births globally) indicates that reduction of maternal PM2.5 exposure through emission reduction strategies should be considered alongside mitigation of other risk factors associated with preterm births.


Subject(s)
Air Pollutants/analysis , Maternal Exposure/adverse effects , Particulate Matter/analysis , Premature Birth/epidemiology , Air Pollution, Indoor/analysis , Cooking , Female , Global Health , Humans , Infant, Newborn , Male , Pregnancy , Premature Birth/chemically induced , Risk Factors
4.
Ecol Evol ; 6(24): 8785-8799, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28035269

ABSTRACT

Risks associated with exposure of individual plant species to ozone (O3) are well documented, but implications for terrestrial biodiversity and ecosystem processes have received insufficient attention. This is an important gap because feedbacks to the atmosphere may change as future O3 levels increase or decrease, depending on air quality and climate policies. Global simulation of O3 using the Community Earth System Model (CESM) revealed that in 2000, about 40% of the Global 200 terrestrial ecoregions (ER) were exposed to O3 above thresholds for ecological risks, with highest exposures in North America and Southern Europe, where there is field evidence of adverse effects of O3, and in central Asia. Experimental studies show that O3 can adversely affect the growth and flowering of plants and alter species composition and richness, although some communities can be resilient. Additional effects include changes in water flux regulation, pollination efficiency, and plant pathogen development. Recent research is unraveling a range of effects belowground, including changes in soil invertebrates, plant litter quantity and quality, decomposition, and nutrient cycling and carbon pools. Changes are likely slow and may take decades to become detectable. CESM simulations for 2050 show that O3 exposure under emission scenario RCP8.5 increases in all major biomes and that policies represented in scenario RCP4.5 do not lead to a general reduction in O3 risks; rather, 50% of ERs still show an increase in exposure. Although a conceptual model is lacking to extrapolate documented effects to ERs with limited or no local information, and there is uncertainty about interactions with nitrogen input and climate change, the analysis suggests that in many ERs, O3 risks will persist for biodiversity at different trophic levels, and for a range of ecosystem processes and feedbacks, which deserves more attention when assessing ecological implications of future atmospheric pollution and climate change.

5.
PLoS One ; 11(8): e0161085, 2016.
Article in English | MEDLINE | ID: mdl-27557277

ABSTRACT

Atmospheric nitrogen (N) deposition has had detrimental effects on species composition in a range of sensitive habitats, although N deposition can also increase agricultural productivity and carbon storage, and favours a few species considered of importance for conservation. Conservation targets are multiple, and increasingly incorporate services derived from nature as well as concepts of intrinsic value. Priorities vary. How then should changes in a set of species caused by drivers such as N deposition be assessed? We used a novel combination of qualitative semi-structured interviews and quantitative ranking to elucidate the views of conservation professionals specialising in grasslands, heathlands and mires. Although conservation management goals are varied, terrestrial habitat quality is mainly assessed by these specialists on the basis of plant species, since these are readily observed. The presence and abundance of plant species that are scarce, or have important functional roles, emerged as important criteria for judging overall habitat quality. However, species defined as 'positive indicator-species' (not particularly scarce, but distinctive for the habitat) were considered particularly important. Scarce species are by definition not always found, and the presence of functionally important species is not a sufficient indicator of site quality. Habitat quality as assessed by the key informants was rank-correlated with the number of positive indicator-species present at a site for seven of the nine habitat classes assessed. Other metrics such as species-richness or a metric of scarcity were inconsistently or not correlated with the specialists' assessments. We recommend that metrics of habitat quality used to assess N pollution impacts are based on the occurrence of, or habitat-suitability for, distinctive species. Metrics of this type are likely to be widely applicable for assessing habitat change in response to different drivers. The novel combined qualitative and quantitative approach taken to elucidate the priorities of conservation professionals could be usefully applied in other contexts.


Subject(s)
Air Pollution/analysis , Ecosystem , Environmental Monitoring , Algorithms , Conservation of Natural Resources , Environmental Monitoring/legislation & jurisprudence , Environmental Monitoring/methods , Female , Humans , Male , Models, Theoretical , Qualitative Research , Surveys and Questionnaires
6.
Environ Pollut ; 208(Pt B): 890-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26476695

ABSTRACT

Nitrogen (N) deposition impacts natural and semi-natural ecosystems globally. The responses of vegetation to N deposition may, however, differ strongly between habitats and may be mediated by the form of N. Although much attention has been focused on the impact of total N deposition, the effects of reduced and oxidised N, independent of the total N deposition, have received less attention. In this paper, we present new analyses of national monitoring data in the UK to provide an extensive evaluation of whether there are differences in the effects of reduced and oxidised N deposition across eight habitat types (acid, calcareous and mesotrophic grasslands, upland and lowland heaths, bogs and mires, base-rich mires, woodlands). We analysed data from 6860 plots in the British Countryside Survey 2007 for effects of total N deposition and N form on species richness, Ellenberg N values and grass:forb ratio. Our results provide clear evidence that N deposition affects species richness in all habitats except base-rich mires, after factoring out correlated explanatory variables (climate and sulphur deposition). In addition, the form of N in deposition appears important for the biodiversity of grasslands and woodlands but not mires and heaths. Ellenberg N increased more in relation to NHx deposition than NOy deposition in all but one habitat type. Relationships between species richness and N form were habitat-specific: acid and mesotrophic grasslands appear more sensitive to NHx deposition while calcareous grasslands and woodlands appeared more responsive to NOy deposition. These relationships are likely driven by the preferences of the component plant species for oxidised or reduced forms of N, rather than by soil acidification.


Subject(s)
Grassland , Nitrogen/analysis , Soil Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , Biodiversity , Climate , Environmental Monitoring , Nitrogen Oxides , Poaceae/drug effects , Soil , Sulfur
7.
Environ Pollut ; 182: 448-51, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23631940

ABSTRACT

Citizen science is having increasing influence on environmental monitoring as its advantages are becoming recognised. However methodologies are often simplified to make them accessible to citizen scientists. We tested whether a recent citizen science survey (the OPAL Air Survey) could detect trends in lichen community composition over transects away from roads. We hypothesised that the abundance of nitrophilic lichens would decrease with distance from the road, while that of nitrophobic lichens would increase. The hypothesised changes were detected along strong pollution gradients, but not where the road source was relatively weak, or background pollution relatively high. We conclude that the simplified OPAL methodology can detect large contrasts in nitrogenous pollution, but it may not be able to detect more subtle changes in pollution exposure. Similar studies are needed in conjunction with the ever-growing body of citizen science work to ensure that the limitations of these methods are fully understood.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Lichens/physiology , Nitrogen/analysis , Air Pollution/statistics & numerical data , United Kingdom
8.
Sci Total Environ ; 427-428: 269-76, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22542300

ABSTRACT

Given the lack of studies which measured dissolved organic carbon (DOC) over long periods, especially in non-forest habitat, the aim of this study was to expand the existing datasets with data of mainly non-forest sites that were representative of the major soil and habitat types in the UK. A further aim was to predict DOC concentrations from a number of biotic and abiotic explanatory variables such as rainfall, temperature, vegetation type and soil type in a multivariate way. Pore water was sampled using Rhizon or Prenart samplers at two to three week intervals for 1 year. DOC, pH, organic carbon, carbon/nitrogen (C:N) ratios of soils and slope were measured and data on vegetation, soil type, temperature and precipitation were obtained. The majority of the variation in DOC concentrations between the UK sites could be explained by simple empirical models that included annual precipitation, and soil C:N ratio with precipitation being negatively related to DOC concentrations and C:N ratio being positively related to DOC concentrations. Our study adds significantly to the data reporting DOC concentrations in soils, especially in grasslands, heathlands and moorlands. Broad climatic and site factors have been identified as key factors influencing DOC concentrations.


Subject(s)
Carbon/analysis , Ecosystem , Plants/metabolism , Soil/chemistry , Carbon/chemistry , Carbon/metabolism , England , Environment , Environmental Monitoring , Rain , Seasons , Soil/analysis , Temperature
9.
Rapid Commun Mass Spectrom ; 23(7): 980-4, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19241413

ABSTRACT

Isotopically labelled ozone ((18)O(3)) is an ideal tool to study the deposition of O(3) to plants and soil, but no studies have made use of it due to the technical difficulties in producing isotopically enriched ozone. For (18)O(3) to be used in fumigation experiments, it has to be purified and stored safely prior to fumigations, to ensure that the label is present predominantly in the form of O(3), and to make efficient use of isotopically highly enriched oxygen. We present a simple apparatus that allows for the safe generation, purification, storage, and release of (18)O(3). Following the purification and release of O(3), about half (by volume) of the (18)O is present in the form of O(3). This means that for a given release of (18)O(3) into the fumigation system, a roughly identical volume of (18)O(2) is released. However, the small volume of this concurrent (18)O(2) release (100 nmol mol(-1) in our experiment) results in only a minor shift of the much larger atmospheric oxygen pool, with no detectable consequence for the isotopic enrichment of either soil or plant materials. We demonstrate here the feasibility of using (18)O as an isotopic tracer in O(3) fumigations by exposing dry soil to 100 nmol mol(-1) (18)O(3) for periods ranging from 1 to 11 h. The (18)O tracer accumulation in soil samples is measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS), and the results show a linear increase in (18)O/(16)O isotope ratio over time, with significant differences detectable after 1 h of exposure. The apparatus is adapted for use with fumigation chambers sustaining flow rates of 1 m(3) min(-1) for up to 12 h, but simple modifications now allow larger quantities of O(3) to be stored and continuously released (e.g. for use with open-top chambers or FACE facilities).


Subject(s)
Air Pollutants/analysis , Ozone/metabolism , Feasibility Studies , Fumigation/methods , Oxygen Isotopes , Ozone/chemistry , Plants/metabolism , Soil/analysis
10.
New Phytol ; 182(1): 85-90, 2009.
Article in English | MEDLINE | ID: mdl-19226316

ABSTRACT

* We show that the stable isotope (18)O can be used to trace ozone into different components of the plant-soil system at environmentally relevant concentrations. * We exposed plants and soils to (18)O-labelled ozone and used isotopic enrichment in plant dry matter, leaf water and leaf apoplast, as well as in soil dry matter and soil water, to identify sites of ozone-derived (18)O accumulation. * It was shown that isotopic accumulation rates in plants can be used to infer the location of primary ozone-reaction sites, and that those in bare soils are dependent on water content. However, the isotopic accumulation rates measured in leaf tissue were much lower than the modelled stomatal flux of ozone. * Our new approach has considerable potential to elucidate the fate and reactions of ozone within both plants and soils, at scales ranging from plant communities to cellular defence mechanisms.


Subject(s)
Isotope Labeling/methods , Ozone/metabolism , Soil , Trifolium/metabolism , Fumigation , Oxygen Isotopes , Plant Leaves/metabolism , Water/metabolism
11.
Environ Pollut ; 156(2): 332-40, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18410983

ABSTRACT

Motor vehicles emit a cocktail of pollutants; however, little is known about the effects of these pollutants on bryophytes located in roadside habitats. Six bryophyte species were transplanted to either a woodland or a moorland site adjacent to a motorway, and were monitored over sevenmonths from autumn through to spring. All species showed an increase in one or more of the following near the motorway: growth, membrane leakage, chlorophyll concentration, and nitrogen concentration. The strongest effects were observed in the first 50-100 m from the motorway: this was consistent with the nitrogen dioxide pollution profile, which decreased to background levels at a distance of 100-125 m. It is hypothesised that motor vehicle pollution was responsible for the effects observed, and that nitrogen oxides had a key influence. The observed effects may lead to changes in vegetation composition with significant implications for nature conservation and management of roadside sites.


Subject(s)
Air Pollutants/toxicity , Bryophyta/growth & development , Nitrogen Oxides/toxicity , Vehicle Emissions/toxicity , Bryophyta/chemistry , Chlorophyll/analysis , Ecology/methods , England , Environmental Monitoring/methods , Nitrogen/analysis , Trees , Wetlands
12.
New Phytol ; 179(1): 129-141, 2008.
Article in English | MEDLINE | ID: mdl-18422899

ABSTRACT

The adaptive responses to atmospheric nitrogen deposition for different European accessions of Arabidopsis lyrata petraea were analysed using populations along a strong atmospheric N-deposition gradient. Plants were exposed to three N-deposition rates, reflecting the rates at the different locations, in a full factorial design. Differences between accessions in the response to N were found for important phenological and physiological response variables. For example, plants from low-deposition areas had higher nitrogen-use efficiencies (NUE) and C : N ratios than plants from areas high in N deposition when grown at low N-deposition rates. The NUE decreased in all accessions at higher experimental deposition rates. However, plants from high-deposition areas showed a limited capacity to increase their NUE at lower experimental deposition rates. Plants from low-deposition areas had faster growth rates, higher leaf turnover rates and shorter times to flowering, and showed a greater increase in growth rate in response to N deposition than those from high-deposition areas. Indications for adaptation to N deposition were found, and results suggest that adaptation of plants from areas high in N deposition to increased N deposition has resulted in the loss of plasticity.


Subject(s)
Air Pollutants/metabolism , Arabidopsis/drug effects , Geography , Nitrogen/pharmacology , Adaptation, Physiological , Arabidopsis/growth & development , Arabidopsis/metabolism , Biomass , Environmental Monitoring , Iceland , Nitrogen/metabolism , Norway , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Soil , United Kingdom
13.
Environ Pollut ; 147(3): 454-66, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17412465

ABSTRACT

Two different indices have been proposed for estimation of the risk caused to forest trees across Europe by ground-level ozone, (i) the concentration based AOT40 index (Accumulated Over a Threshold of 40 ppb) and (ii) the recently developed flux based AFstY index (Accumulated stomatal Flux above a flux threshold Y). This paper compares the AOT40 and AFstY indices for three forest trees species at different locations in Europe. The AFstY index is estimated using the DO(3)SE (Deposition of Ozone and Stomatal Exchange) model parameterized for Scots pine (Pinus sylvestris), beech (Fagus sylvatica) and holm oak (Quercus ilex). The results show a large difference in the perceived O(3) risk when using AOT40 and AFstY indices both between species and regions. The AOT40 index shows a strong north-south gradient across Europe, whereas there is little difference between regions in the modelled values of AFstY. There are significant differences in modelled AFstY between species, which are predominantly determined by differences in the timing and length of the growing season, the periods during which soil moisture deficit limits stomatal conductance, and adaptation to soil moisture stress. This emphasizes the importance of defining species-specific flux response variables to obtain a more accurate quantification of O(3) risk.


Subject(s)
Climate , Oxidants, Photochemical/toxicity , Ozone/toxicity , Trees/drug effects , Environmental Exposure/adverse effects , Environmental Monitoring/methods , Europe , Fagus/drug effects , Models, Biological , Pinus/drug effects , Quercus/drug effects , Risk Assessment/methods , Species Specificity
14.
Environ Pollut ; 146(3): 763-70, 2007 Apr.
Article in English | MEDLINE | ID: mdl-16824657

ABSTRACT

Climate change factors such as elevated CO2 concentrations, warming and changes in precipitation affect the stomatal flux of ozone (O3) into leaves directly or indirectly by altering the stomatal conductance, atmospheric O3 concentrations, frequency and extent of pollution episodes and length of the growing season. Results of a case study for winter wheat indicate that in a future climate the exceedance of the flux-based critical level of O3 might be reduced across Europe, even when taking into account an increase in tropospheric background O3 concentration. In contrast, the exceedance of the concentration-based critical level of O3 will increase with the projected increase in tropospheric background O3 concentration. The influence of climate change should be considered when predicting the future effects of O3 on vegetation. There is a clear need for multi-factorial, open-air experiments to provide more realistic information for O3 flux-effect modelling in a future climate.


Subject(s)
Climate , Oxidants, Photochemical/toxicity , Ozone/toxicity , Triticum/metabolism , Atmosphere/analysis , Ecosystem , Europe , Greenhouse Effect , Meteorological Concepts , Oxidants, Photochemical/analysis , Oxidants, Photochemical/pharmacokinetics , Ozone/analysis , Ozone/pharmacokinetics , Plant Leaves/drug effects , Plant Leaves/metabolism , Temperature , Triticum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...