Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanophotonics ; 13(14): 2565-2573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38836100

ABSTRACT

Modifying the energy landscape of existing molecular emitters is an attractive challenge with favourable outcomes in chemistry and organic optoelectronic research. It has recently been explored through strong light-matter coupling studies where the organic emitters were placed in an optical cavity. Nonetheless, a debate revolves around whether the observed change in the material properties represents novel coupled system dynamics or the unmasking of pre-existing material properties induced by light-matter interactions. Here, for the first time, we examined the effect of strong coupling in polariton organic light-emitting diodes via time-resolved electroluminescence studies. We accompanied our experimental analysis with theoretical fits using a model of coupled rate equations accounting for all major mechanisms that can result in delayed electroluminescence in organic emitters. We found that in our devices the delayed electroluminescence was dominated by emission from trapped charges and this mechanism remained unmodified in the presence of strong coupling.

2.
J Phys Chem A ; 126(41): 7480-7490, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36215098

ABSTRACT

2,5-Diphenyl-1,3,4-oxadiazole has been widely used as an acceptor portion of donor-acceptor fluorophores that exhibit thermally activated delayed fluorescence (TADF), but analogous 2-alkyl-5-phenyl-1,3,4-oxadiazoles have been much less widely investigated. Here the properties of carbazole-substituted 2-methyl-5-phenyl-1,3,4-oxadiazoles are compared to those of their 2,5-diphenyl analogues. The fluorescence of each of the former compounds is blue-shifted by ca. 50-100 meV relative to that in the latter, while similar estimated values of the singlet-triplet energy separation (ΔEST) are maintained. In particular, 2-methyl-5-(penta(9-carbazolyl)phenyl)-1,3,4-oxadiazole and 2-methyl-5-(penta(3,6-di-tert-butyl-9-carbazolyl)phenyl)-1,3,4-oxadiazole exhibit solution fluorescence maxima of 466 and 485 nm and estimated ΔEST values of 0.12 and 0.03 eV, respectively. In both cases the reverse intersystem crossing (RISC) rates inferred from their solution fluorescence behavior are over twice those of the corresponding 2-phenyl derivatives. Organic light-emitting diodes (OLEDs) in which the 2-methyl derivatives are used as emitters yield external quantum efficiency (EQE) values of up to 23%. OLEDs with 2-methyl-5-(penta(9-carbazolyl)phenyl)-1,3,4-oxadiazole and 2-methyl-5-(penta(3,6-di-tert-butyl-9-carbazolyl)phenyl)-1,3,4-oxadiazole emitters show reduced efficiency rolloff at high current densities relative to their 2-phenyl counterparts, the latter exhibiting an EQE of 16% at 1000 cd m-2.

3.
Am J Bot ; 109(9): 1410-1427, 2022 09.
Article in English | MEDLINE | ID: mdl-35862825

ABSTRACT

PREMISE: Hedychium J. Koenig (Zingiberaceae) is endemic to the Indo-Malayan Realm and is known for its colorful and fragrant flowers. Historically, two different pollination syndromes characterize Hedychium: diurnal or bird pollination, and nocturnal or moth pollination. In this study, we aim to understand the evolution of nocturnal and diurnal flowers, and to test its putative association with lineage diversification in Hedychium. METHODS: A molecular tree of Hedychium was used as a scaffold upon which we estimated ancestral character states, phylogenetic signals, and correlations for certain categorical and continuous floral traits. Furthermore, we used phylomorphospace and trait-dependent diversification rate estimation analyses to understand phenotypic evolution and associated lineage diversification in Hedychium. RESULTS: Although floral color and size lacked any association with specific pollinators, white or pale flowers were most common in the early branching clades when compared to bright-colored flowers, which were more widely represented in the most-derived clade IV. Five categorical and two continuous characters were identified to have informative evolutionary patterns, which also emphasized that ecology may have played a critical role in the diversification of Hedychium. CONCLUSIONS: From our phylogenetic analyses and ecological observations, we conclude that specializations in pollinator interactions are rare in the hyperdiverse clade IV, thus challenging the role of both moth-specialization and bird-specialization as central factors in the diversification of Hedychium. However, our results also suggest that clade III (predominantly island clade) may show specializations, and future studies should investigate ecological and pollinator interactions, along with inclusion of new traits such as floral fragrance and anthesis time.


Subject(s)
Moths , Zingiberaceae , Animals , Biological Evolution , Birds/genetics , Flowers/genetics , Moths/genetics , Phylogeny , Pollination
4.
Mol Phylogenet Evol ; 170: 107440, 2022 05.
Article in English | MEDLINE | ID: mdl-35192919

ABSTRACT

The Indo-Malayan Realm is a biogeographic realm that extends from the Indian Subcontinent to the islands of Southeast Asia (Malay Archipelago). Despite being megadiverse, evolutionary hypotheses explaining taxonomic diversity in this region have been rare. Here, we investigate the role of geoclimatic events such as Himalayan orogeny and monsoon intensification in the diversification of the ginger-lilies (Hedychium J.Koenig: Zingiberaceae). We first built a comprehensive, time-calibrated phylogeny of Hedychium with 75% taxonomic and geographic sampling. We found that Hedychium is a very young lineage that originated in Northern Indo-Burma, in the Late Miocene (c. 10.6 Ma). This was followed by a late Neogene and early Quaternary diversification, with multiple dispersal events to Southern Indo-Burma, Himalayas, Peninsular India, and the Malay Archipelago. The most speciose clade IV i.e., the predominantly Indo-Burmese clade also showed a higher diversification rate, suggesting its recent rapid radiation. Our divergence dating and GeoHiSSE results demonstrate that the diversification of Hedychium was shaped by both the intensifications in the Himalayan uplift as well as the Asian monsoon. Ancestral character-state reconstructions identified the occurrence of vegetative dormancy in both clades I and II, whereas the strictly epiphytic growth behavior, island dwarfism, lack of dormancy, and a distinct environmental niche were observed only in the predominantly island clade i.e., clade III. Finally, we show that the occurrence of epiphytism in clade III corresponds with submergence due to sea-level changes, suggesting it to be an adaptive trait. Our study highlights the role of recent geoclimatic events and environmental factors in the diversification of plants within the Indo-Malayan Realm and the need for collaborative work to understand biogeographic patterns within this understudied region. This study opens new perspectives for future biogeographic studies in this region and provides a framework to explain the taxonomic hyperdiversity of the Indo-Malayan Realm.


Subject(s)
Zingiber officinale , Zingiberaceae , Asia, Southeastern , Biological Evolution , Phylogeny , Phylogeography , Zingiberaceae/genetics
5.
PhytoKeys ; (117): 73-84, 2019.
Article in English | MEDLINE | ID: mdl-30783381

ABSTRACT

We describe Hedychiumziroense sp. nov. from Northeast India (NE India) which was discovered during one of our recent botanical explorations in Arunachal Pradesh. We provide detailed morphological comparison of this species with four other Hedychium species (H.griersonianum R.M.Sm., H.ellipticum Buch.-Ham. ex Sm., H.gomezianum Wall. and H.yunnanense Gagnep.), with which it shares some morphological similarities. The new species is characterised by a dense cylindrical spike, pubescent rachis, folded bracts, 2-3 flowers per cincinnus, deeply cleft labellum and a distinctive late monsoonal flowering phenology from August to September.

6.
PhytoKeys ; (96): 21-34, 2018.
Article in English | MEDLINE | ID: mdl-29670451

ABSTRACT

The authors introduce the term facultative vivipary for the first time in gingers and elaborate on this reproductive strategy. Four new observations of facultative vivipary are reported in the genus Hedychium which were discovered during botanical explorations by the authors in Northeast India (NE India) over the past three years. The viviparous taxa are H. marginatum C.B.Clarke, H. speciosum var. gardnerianum (Ker Gawl.) Sanoj & M.Sabu (previously, H. gardnerianum Sheppard ex Ker Gawl.), H. thyrsiforme Buch.-Ham. ex Sm. and H. urophyllum G.Lodd. The authors also attempt to summarise the occurrence of vivipary in the family Zingiberaceae from published reports and to clarify a taxonomic misidentification in a previously known report of vivipary in Hedychium elatum.

SELECTION OF CITATIONS
SEARCH DETAIL
...