Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(20): e2318119121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709930

ABSTRACT

Brain metastasis of advanced breast cancer often results in deleterious consequences. Metastases to the brain lead to significant challenges in treatment options, as the blood-brain barrier (BBB) prevents conventional therapy. Thus, we hypothesized that creation of a nanoparticle (NP) that distributes to both primary tumor site and across the BBB for secondary brain tumor can be extremely beneficial. Here, we report a simple targeting strategy to attack both the primary breast and secondary brain tumors utilizing a single NP platform. The nature of these mitochondrion-targeted, BBB-penetrating NPs allow for simultaneous targeting and drug delivery to the hyperpolarized mitochondrial membrane of the extracranial primary tumor site in addition to tumors at the brain. By utilizing a combination of such dual anatomical distributing NPs loaded with therapeutics, we demonstrate a proof-of-concept idea to combat the increased metabolic plasticity of brain metastases by lowering two major energy sources, oxidative phosphorylation (OXPHOS) and glycolysis. By utilizing complementary studies and genomic analyses, we demonstrate the utility of a chemotherapeutic prodrug to decrease OXPHOS and glycolysis by pairing with a NP loaded with pyruvate dehydrogenase kinase 1 inhibitor. Decreasing glycolysis aims to combat the metabolic flexibility of both primary and secondary tumors for therapeutic outcome. We also address the in vivo safety parameters by addressing peripheral neuropathy and neurobehavior outcomes. Our results also demonstrate that this combination therapeutic approach utilizes mitochondrial genome targeting strategy to overcome DNA repair-based chemoresistance mechanisms.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Breast Neoplasms , Nanoparticles , Oxidative Phosphorylation , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Brain Neoplasms/pathology , Animals , Humans , Female , Nanoparticles/chemistry , Mice , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Oxidative Phosphorylation/drug effects , Cell Line, Tumor , Mitochondria/metabolism , Mitochondria/drug effects , Drug Delivery Systems/methods , Glycolysis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use
3.
ACS Cent Sci ; 9(7): 1297-1312, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37521786

ABSTRACT

Tumor cells adapt to diverse survival strategies defying our pursuit of multimodal cancer therapy. Prostate cancer (PCa) is an example that is resistant to one of the most potent chemotherapeutics, cisplatin. PCa cells survive and proliferate using fatty acid oxidation (FAO), and the dependence on fat utilization increases as the disease progresses toward a resistant form. Using a pool of patient biopsies, we validated the expression of a key enzyme carnitine palmitoyltransferase 1 A (CPT1A) needed for fat metabolism. We then discovered that a cisplatin prodrug, Platin-L, can inhibit the FAO of PCa cells by interacting with CPT1A. Synthesizing additional cisplatin-based prodrugs, we documented that the presence of an available carboxylic acid group near the long chain fatty acid linker on the Pt(IV) center is crucial for CPT1A binding. As a result of fat metabolism disruption by Platin-L, PCa cells transition to an adaptive glucose-dependent chemosensitive state. Potential clinical translation of Platin-L will require a delivery vehicle to direct it to the prostate tumor microenvironment. Thus, we incorporated Platin-L in a biodegradable prostate tumor-targeted orally administrable nanoformulation and demonstrated its safety and efficacy. The distinctive FAO inhibitory property of Platin-L can be of potential clinical relevance as it offers the use of cisplatin for otherwise resistant cancer.

4.
Bioconjug Chem ; 34(6): 1122-1129, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37279374

ABSTRACT

The metabolic preference of cells toward glycolysis often indicates a diseased state ranging from cancer to other dysfunctions. When a particular cell type utilizes glycolysis as a major energy production pathway, their mitochondria become impaired resulting a cascade of events which eventually contributes to resistance toward therapies to tackle such diseases. In abnormal tissues such as seen in the tumor microenvironment, when cancer cells utilize glycolysis, other cell types such as the immune cells switch their metabolism and prefer such glycolysis. As a result, utilization of therapies to destroy glycolytic preferences by cancer cells results in destruction of immune cells contributing toward an immunosuppressive phenotype. Thus, development of targeted, trackable, comparatively stable glycolysis inhibitors is urgently needed to manage diseases where glycolysis is preferred for disease progression. No glycolysis inhibitor exists which can be tracked and packaged in a delivery vehicle for efficient targeted deployment. Here, we report synthesis, characterization, and formulation of an all-in-one glycolysis inhibitor and document the therapeutic potential along with trackability and glycolysis inhibition of this inhibitor by utilizing an in vivo breast cancer model.


Subject(s)
Neoplasms , Humans , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Neoplasms/drug therapy , Glycolysis/genetics , Tumor Microenvironment
5.
Dalton Trans ; 52(12): 3575-3585, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36723189

ABSTRACT

The success story of cisplatin spans over six decades now and yet it continues to be the key player in most chemotherapeutic regimens. Numerous efforts have been made to improve its efficacy, address its shortcomings, and overcome drug resistance. One such strategy is to develop new platinum(IV)-based prodrugs with functionally active ligands to deliver combination therapeutics. This strategy not only enables the drug candidate to access multiple drug targets but also enhances the kinetic inertness of platinum complexes and thereby ensures greater accumulation of active drugs at the target site. We report the synthesis of Platin-C, a platinum(IV)-based cisplatin prodrug tethered to the active component of ancient herbal medicine, curcumin, as one of the axial ligands. This combination complex showed improved chemotherapeutic efficacy in cisplatin resistant A2780/CP70 cell lines compared with the individual components. An amine-terminated biodegradable polymer was suitably functionalized with the triphenylphosphonium (TPP) cation to obtain a mitochondria-directed drug delivery platform. Quantification of Platin-C loading into these NPs using complementary techniques employing curcumin optical properties in high-performance liquid chromatography and platinum-based inductively coupled plasma mass spectrometry evidenced efficacious payload incorporation resulting in functional activities of both the components. Stability studies for a period of one week indicated that the NPs remain stable, enabling substantial loading and controlled release of the prodrug. The targeting nanoparticle (NP) platform was utilized to deliver Platin-C primarily in the mitochondrial network of cancer cells as monitored using confocal microscopy employing the green fluorescence of the curcumin pendant. Our studies showed that amine terminated NPs were relatively less efficient in their ability to target mitochondria despite being positively charged. This re-validated the importance of lipophilic positively charged TPP surface functionalities to successfully target cellular mitochondria. We validated the capabilities of Platin-C and its mitochondria-targeting nanoparticles towards inflicting mitochondria-directed activity in cisplatin-sensitive and cisplatin-resistant cell lines. Furthermore, our studies also demonstrated the effectiveness of Platin-C incorporated targeting NPs in attenuating cellular inflammatory markers by utilizing the curcumin component. This study advances our understanding of the cisplatin prodrug approach to combine chemotherapeutic and inflammatory effects in accessing combinatory pathways.


Subject(s)
Antineoplastic Agents , Curcumin , Nanoparticles , Ovarian Neoplasms , Prodrugs , Humans , Female , Cisplatin/chemistry , Curcumin/pharmacology , Prodrugs/chemistry , Cell Line, Tumor , Ovarian Neoplasms/drug therapy , Platinum/chemistry , Mitochondria , Nanoparticles/chemistry , Antineoplastic Agents/chemistry
6.
ACS Appl Bio Mater ; 5(11): 5432-5444, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36318654

ABSTRACT

Exploiting aromatic π-interaction for the stabilization of polyaromatic anticancer drugs at the core of the polymer nanoassemblies is an elegant approach for drug delivery in cancer research. To demonstrate this concept, here we report one of the first attempts on enzyme-responsive polymers from aryl-unit containing amino acid bioresources such as l-tyrosine and 3,4-dihydroxy-l-phenylalanine (l-DOPA). A silyl ether protection strategy was adopted to make melt polymerizable monomers, which were subjected to solvent free melt polycondensation to produce silyl-protected poly(ester-urethane)s. Postpolymerization deprotection yielded phenol- and catechol-functionalized poly(ester-urethane)s with appropriate amphiphilicity and produced 100 ± 10 nm size nanoparticles in an aqueous solution. The aromatic π-core in the nanoparticle turns out to be the main driving force for the successful encapsulation of anticancer drugs such as doxorubicin (DOX) and topotecan (TPT). The electron-rich catechol aromatic unit in l-DOPA was found to be unique in stabilizing the DOX and TPT, whereas its l-tyrosine counterpart was found to exhibit limited success. Aromatic π-interactions between l-DOPA and anticancer drug molecules were established by probing the fluorescence characteristics of the drug-polymer chain interactions. Lysosomal enzymatic biodegradation of the poly(ester-urethane) backbone disassembled the nanoparticles and released the loaded drugs at the cellular level. The nascent polymer was nontoxic in breast cancer (MCF7) and WT-MEF cell lines, whereas its DOX and TPT loaded nanoparticles showed remarkable cell growth inhibition. A LysoTracker-assisted confocal microscopic imaging study directly evidenced the polymer nanoparticles' biodegradation at the intracellular level. The present investigation gives an opportunity to design aromatic π-interaction driven drug stabilization in l-amino acid based polymer nanocarriers for drug delivery applications.


Subject(s)
Antineoplastic Agents , Neoplasms , Drug Carriers/chemistry , Urethane/therapeutic use , Amino Acids/therapeutic use , Esters/therapeutic use , Phenol/therapeutic use , Levodopa/therapeutic use , Doxorubicin/chemistry , Polymers/chemistry , Antineoplastic Agents/pharmacology , Phenols/therapeutic use , Catechols/therapeutic use , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...