Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Med Virol ; 96(5): e29655, 2024 May.
Article in English | MEDLINE | ID: mdl-38727091

ABSTRACT

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Subject(s)
Coronavirus 229E, Human , Plasma Gases , Virus Inactivation , Humans , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/physiology , Virus Inactivation/drug effects , Plasma Gases/pharmacology , Cell Line , Porosity , Disinfection/methods , Stainless Steel
2.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762409

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. The persistence of viruses on materials depends on porosity, adsorption, evaporation, isoelectric point, and environmental conditions, such as temperature, pH, and relative humidity. Disinfection techniques are crucial for preventing viral contamination on animated and inanimate surfaces. Currently, there are few effective methodologies for preventing SARS-CoV-2 and other coronaviruses without any side effects. Before infection can occur, measures must be taken to prevent the persistence of the coronavirus on the surfaces of both porous and non-porous inanimate materials. This review focuses on coronavirus persistence in surface materials (inanimate) and control measures. Viruses are inactivated through chemical and physical methods; the chemical methods particularly include alcohol, chlorine, and peroxide, whereas temperature, pH, humidity, ultraviolet irradiation (UV), gamma radiation, X-rays, ozone, and non-thermal, plasma-generated reactive oxygen and nitrogen species (RONS) are physical methods.

3.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37512663

ABSTRACT

Quercetin (QRC), a flavonoid found in foods and plants such as red wine, onions, green tea, apples, and berries, possesses remarkable anti-inflammatory and antioxidant properties. These properties make it effective in combating cancer cells, reducing inflammation, protecting against heart disease, and regulating blood sugar levels. To enhance the potential of inclusion complexes (ICs) containing ß-cyclodextrin (ß-CD) in cancer therapy, they were transformed into nano-inclusion complexes (NICs). In this research, NICs were synthesized using ethanol as a reducing agent in the nanoprecipitation process. By employing FT-IR analysis, it was observed that hydrogen bonds were formed between QRC and ß-CD. Moreover, the IC molecules formed NICs through the aggregation facilitated by intermolecular hydrogen bonds. Proton NMR results further confirmed the occurrence of proton shielding and deshielding subsequent to the formation of NICs. The introduction of ß-CDs led to the development of a distinctive feather-like structure within the NICs. The particle sizes were consistently measured around 200 nm, and both SAED and XRD patterns indicated the absence of crystalline NICs, providing supporting evidence. Through cytotoxicity and fluorescence-assisted cell-sorting analysis, the synthesized NICs showed no significant damage in the cell line of MCF-7. In comparison to QRC alone, the presence of high concentrations of NICs exhibited a lesser degree of toxicity in normal human lung fibroblast MRC-5 cells. Moreover, the individual and combined administration of both low and high concentrations of NICs effectively suppressed the growth of cancer cells (MDA-MB-231). The solubility improvement resulting from the formation of QRC-NICs with ß-CD enhanced the percentage of cell survival for MCF-7 cell types.

4.
Biomolecules ; 13(7)2023 07 20.
Article in English | MEDLINE | ID: mdl-37509190

ABSTRACT

Recently, researchers have employed metal-organic frameworks (MOFs) for loading pharmaceutically important substances. MOFs are a novel class of porous class of materials formed by the self-assembly of organic ligands and metal ions, creating a network structure. The current investigation effectively achieves the loading of adenosine (ADN) into a metal-organic framework based on cyclodextrin (CD) using a solvent diffusion method. The composite material, referred to as ADN:ß-CD-K MOFs, is created by loading ADN into beta-cyclodextrin (ß-CD) with the addition of K+ salts. This study delves into the detailed examination of the interaction between ADN and ß-CD in the form of MOFs. The focus is primarily on investigating the hydrogen bonding interaction and energy parameters through the aid of semi-empirical quantum mechanical computations. The analysis of peaks that are associated with the ADN-loaded ICs (inclusion complexes) within the MOFs indicates that ADN becomes incorporated into a partially amorphous state. Observations from SEM images reveal well-defined crystalline structures within the MOFs. Interestingly, when ADN is absent from the MOFs, smaller and irregularly shaped crystals are formed. This could potentially be attributed to the MOF manufacturing process. Furthermore, this study explores the additional cross-linking of ß-CD with K through the coupling of -OH on the ß-CD-K MOFs. The findings corroborate the results obtained from FT-IR analysis, suggesting that ß-CD plays a crucial role as a seed in the creation of ß-CD-K MOFs. Furthermore, the cytotoxicity of the MOFs is assessed in vitro using MDA-MB-231 cells (human breast cancer cells).


Subject(s)
Cyclodextrins , Metal-Organic Frameworks , Neoplasms , beta-Cyclodextrins , gamma-Cyclodextrins , Humans , Metal-Organic Frameworks/chemistry , Spectroscopy, Fourier Transform Infrared , Cyclodextrins/chemistry , beta-Cyclodextrins/chemistry , Neoplasms/drug therapy
5.
Pharmaceutics ; 15(5)2023 May 21.
Article in English | MEDLINE | ID: mdl-37242798

ABSTRACT

Novel biocompatible and efficient photothermal (PT) therapeutic materials for cancer treatment have recently garnered significant attention, owing to their effective ablation of cancer cells, minimal invasiveness, quick recovery, and minimal damage to healthy cells. In this study, we designed and developed calcium ion-doped magnesium ferrite nanoparticles (Ca2+-doped MgFe2O4 NPs) as novel and effective PT therapeutic materials for cancer treatment, owing to their good biocompatibility, biosafety, high near-infrared (NIR) absorption, easy localization, short treatment period, remote controllability, high efficiency, and high specificity. The studied Ca2+-doped MgFe2O4 NPs exhibited a uniform spherical morphology with particle sizes of 14.24 ± 1.32 nm and a strong PT conversion efficiency (30.12%), making them promising for cancer photothermal therapy (PTT). In vitro experiments showed that Ca2+-doped MgFe2O4 NPs had no significant cytotoxic effects on non-laser-irradiated MDA-MB-231 cells, confirming that Ca2+-doped MgFe2O4 NPs exhibited high biocompatibility. More interestingly, Ca2+-doped MgFe2O4 NPs exhibited superior cytotoxicity to laser-irradiated MDA-MB-231 cells, inducing significant cell death. Our study proposes novel, safe, high-efficiency, and biocompatible PT therapeutics for treating cancers, opening new vistas for the future development of cancer PTT.

6.
Micromachines (Basel) ; 14(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838156

ABSTRACT

The exceptional characteristics of bio-synthesized copper oxide nanoparticles (CuO NPs), including high surface-to-volume ratio and high-profit strength, are of tremendous interest. CuO NPs have cytotoxic, catalytic, antibacterial, and antioxidant properties. Fruit peel extract has been recommended as a valuable alternative method due to the advantages of economic prospects, environment-friendliness, improved biocompatibility, and high biological activities, such as antioxidant and antimicrobial activities, as many physical and chemical methods have been applied to synthesize metal oxide NPs. In the presence of apple peel extract and microwave (MW) irradiation, CuO NPs are produced from the precursor CuCl2. 2H2O. With the help of TEM analysis, and BET surface area, the average sizes of the obtained NPs are found to be 25-40 nm. For use in antimicrobial applications, CuO NPs are appropriate. Disk diffusion tests were used to study the bactericidal impact in relation to the diameter of the inhibition zone, and an intriguing antibacterial activity was confirmed on both the Gram-positive bacterial pathogen Staphylococcus aureus and Gram-negative bacterial pathogen Escherichia coli. Moreover, CuO NPs did not have any toxic effect on seed germination. Thus, this study provides an environmentally friendly material and provides a variety of advantages for biomedical applications and environmental applications.

7.
Curr Issues Mol Biol ; 44(11): 5666-5690, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421668

ABSTRACT

Global society has been highly pressured by the COVID-19 pandemic, which has exposed vulnerabilities in supply chains for disinfection products, personal protective equipment, and medical resources worldwide. It is critically necessary to find effective treatments and medications for these viral infections. This review summarizes and emphasizes critical features of recent breakthroughs in vaccines, inhibitors, radiations, and innovative nonthermal atmospheric plasma (NTAP) technologies to inactivate COVID-19. NTAP has emerged as an effective, efficient, and safe method of viral inactivation. NTAP can be used to inactivate viruses in an environmentally friendly manner, as well as activate animal and plant viruses in a variety of matrices. Researchers and engineers desire to help the medical world deal with the ongoing COVID-19 epidemic by establishing techniques that make use of widely available NTAP technologies. NTAP technology is not dependent on viral strain, and it does not necessitate months or years of research to develop specific vaccines for each novel or arising viral disease. We believe the NTAP is a highly promising technique for combating COVID-19 and other viruses. Thus, NTAP technology could be a significant breakthrough in the near future in assisting humans in combating COVID-19 infections. We hope that this review provides a platform for readers to examine the progress made in the fight against COVID-19 through the use of vaccines, inhibitors, radiation, and NTAP.

8.
J Pharm Biomed Anal ; 221: 115057, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36126612

ABSTRACT

A potentially active water-soluble anti-viral with lesser toxic material from the Oseltamivir (OTV) has been produced by the sonication method. The formed material has been further characterized by UV-visible, FT-IR, powder XRD, SEM, TGA/DTA, ROESY, XPS, AFM and etc., The results of DFT calculation have proven that inclusion complexes (ICs) are theoretically and energetically more advantageous models and structures have also been proposed based on the results. Analysis of drug release has been carried out at three pH levels, and it is revealed the analysis is most helpful at acidic pH levels for the ICs with S-CD over H-CD. Over OTV without CDs, OTV:S-CD-ICs exhibited a very less cytotoxic ability on cancer cell lines than ICs with M-CD. ICs enhanced the coronavirus inactivation nature of OTV. This study provides for the first time a full characterization of ICs of OTV with CDs and highlights the impact of complexation on pharmacological activity.


Subject(s)
Coronavirus , Cyclodextrins , beta-Cyclodextrins , Cyclodextrins/chemistry , Oseltamivir/pharmacology , Powders , Solubility , Spectroscopy, Fourier Transform Infrared , Sulfates , Water/chemistry , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology
9.
Mol Nutr Food Res ; 50(12): 1212-9, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17103376

ABSTRACT

Cholesterol feeding has been often used to study the etiology of hypercholesterolaemia-related metabolic disturbances. The aim of the present study is to investigate the effects of a pentacyclic triterpene, lupeol, and its ester derivative on hepatic abnormalities associated with hypercholesterolemic rats. Hypercholesterolaemia was induced in male Wistar rats by feeding them with a high cholesterol diet (HCD) containing normal rat chow supplemented with 4% cholesterol and 1% cholic acid, for 30 days. Lupeol and lupeol linoleate were supplemented (50 mg/kg body wt/day) during the last 15 days. Increased hepatic lipid profile along with abnormalities in lipid-metabolizing enzyme activities were seen in hypercholesterolemic rats. An apparent increase in the expression of Acyl-CoA cholesterol acyltransferase mRNA was seen in HCD fed rats. The activities of hepatic marker enzymes, which serve as indices of cellular injury, were altered in HCD fed rats. Treatment with triterpenes significantly modulated the abnormalities induced by hypercholesterolaemia. Also, an increased (P >0.001) faecal excretion of cholesterol and bile acids were observed in lupeol and lupeol linoleate group when compared with HCD fed group. Therefore, it can be concluded that triterpenes treatment afforded substantial protection against the anomalies, which are manifested during the early stage of hypercholesterolemic atherogenesis.


Subject(s)
Hypercholesterolemia/complications , Liver Diseases/etiology , Liver Diseases/prevention & control , Triterpenes/administration & dosage , Animals , Bile Acids and Salts/analysis , Cholesterol/analysis , Cholesterol, Dietary/administration & dosage , Dietary Supplements , Feces/chemistry , Hypercholesterolemia/etiology , Lipids/analysis , Liver/chemistry , Liver/enzymology , Male , Pentacyclic Triterpenes , RNA, Messenger/analysis , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Sterol O-Acyltransferase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...