Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Aging Neurosci ; 16: 1393351, 2024.
Article in English | MEDLINE | ID: mdl-38836051

ABSTRACT

Iron dyshomeostasis and neuroinflammation, characteristic features of the aged brain, and exacerbated in neurodegenerative disease, may induce oxidative stress-mediated neurodegeneration. In this study, the effects of potential priming with mild systemic iron injections on subsequent lipopolysaccharide (LPS)-induced inflammation in adult C57Bl/6J mice were examined. After cognitive testing, regional brain tissues were dissected for iron (metal) measurements by total reflection X-ray fluorescence and synchrotron radiation X-Ray fluorescence-based elemental mapping; and iron regulatory, ferroptosis-related, and glia-specific protein analysis, and lipid peroxidation by western blotting. Microglial morphology and astrogliosis were assessed by immunohistochemistry. Iron only treatment enhanced cognitive performance on the novel object location task compared with iron priming and subsequent LPS-induced inflammation. LPS-induced inflammation, with or without iron treatment, attenuated hippocampal heme oxygenase-1 and augmented 4-hydroxynonenal levels. Conversely, in the cortex, elevated ferritin light chain and xCT (light chain of System Xc-) were observed in response to LPS-induced inflammation, without and with iron-priming. Increased microglial branch/process lengths and astrocyte immunoreactivity were also increased by combined iron and LPS in both the hippocampus and cortex. Here, we demonstrate iron priming and subsequent LPS-induced inflammation led to iron dyshomeostasis, compromised antioxidant function, increased lipid peroxidation and altered neuroinflammatory state in a brain region-dependent manner.

2.
Front Aging Neurosci ; 12: 196, 2020.
Article in English | MEDLINE | ID: mdl-32760266

ABSTRACT

Alzheimer's disease is an emerging global epidemic that is becoming increasingly unsustainable. Most of the clinical trials have been centered around targeting ß-amyloid and have met with limited success. There is a great impetus to identify alternative drug targets. Iron appears to be the common theme prevalent across neurodegenerative diseases. Iron has been shown to promote aggregation and pathogenicity of the characteristic aberrant proteins, ß-amyloid, tau, α-synuclein, and TDP43, in these diseases. Further support for the involvement of iron in pathogenesis is provided by the recent discovery of a new form of cell death, ferroptosis. Arising from iron-dependent lipid peroxidation, ferroptosis is augmented in conditions of cysteine deficiency and glutathione peroxidase-4 inactivation. Here, we review clinical trials that provide the rationale for targeting ferroptosis to delay the pathogenesis of Alzheimer's disease (AD), potentially of relevance to other neurodegenerative diseases.

3.
Alzheimers Res Ther ; 12(1): 72, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32517787

ABSTRACT

BACKGROUND: Heme and iron homeostasis is perturbed in Alzheimer's disease (AD); therefore, the aim of the study was to examine the levels and association of heme with iron-binding plasma proteins in cognitively normal (CN), mild cognitive impairment (MCI), and AD individuals from the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) and Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohorts. METHODS: Non-targeted proteomic analysis by high-resolution mass spectrometry was performed to quantify relative protein abundances in plasma samples from 144 CN individuals from the AIBL and 94 CN from KARVIAH cohorts and 21 MCI and 25 AD from AIBL cohort. ANCOVA models were utilized to assess the differences in plasma proteins implicated in heme/iron metabolism, while multiple regression modeling (and partial correlation) was performed to examine the association between heme and iron proteins, structural neuroimaging, and cognitive measures. RESULTS: Of the plasma proteins implicated in iron and heme metabolism, hemoglobin subunit ß (p = 0.001) was significantly increased in AD compared to CN individuals. Multiple regression modeling adjusted for age, sex, APOEε4 genotype, and disease status in the AIBL cohort revealed lower levels of transferrin but higher levels of hemopexin associated with augmented brain amyloid deposition. Meanwhile, transferrin was positively associated with hippocampal volume and MMSE performance, and hemopexin was negatively associated with CDR scores. Partial correlation analysis revealed lack of significant associations between heme/iron proteins in the CN individuals progressing to cognitive impairment. CONCLUSIONS: In conclusion, heme and iron dyshomeostasis appears to be a feature of AD. The causal relationship between heme/iron metabolism and AD warrants further investigation.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/genetics , Amyloid beta-Peptides , Australia , Hemopexin , Humans , Proteomics , Transferrin
4.
Redox Biol ; 32: 101494, 2020 05.
Article in English | MEDLINE | ID: mdl-32199332

ABSTRACT

Iron dyshomeostasis is implicated in Alzheimer's disease (AD) alongside ß-amyloid and tau pathologies. Despite the recent discovery of ferroptosis, an iron-dependent form cell death, hitherto, in vivo evidence of ferroptosis in AD is lacking. The present study uniquely adopts an integrated multi-disciplinary approach, combining protein (Western blot) and elemental analysis (total reflection X-ray fluorescence) with metabolomics (1H nuclear magnetic resonance spectroscopy) to identify iron dyshomeostasis and ferroptosis, and possible novel interactions with metabolic dysfunction in age-matched male cognitively normal (CN) and AD post-mortem brain tissue (n = 7/group). Statistical analysis was used to compute differences between CN and AD, and to examine associations between proteins, elements and/or metabolites. Iron dyshomeostasis with elevated levels of ferritin, in the absence of increased elemental iron, was observed in AD. Moreover, AD was characterised by enhanced expression of the light-chain subunit of the cystine/glutamate transporter (xCT) and lipid peroxidation, reminiscent of ferroptosis, alongside an augmented excitatory glutamate to inhibitory GABA ratio. Protein, element and metabolite associations also greatly differed between CN and AD suggesting widespread metabolic dysregulation in AD. We demonstrate iron dyshomeostasis, upregulated xCT (impaired glutathione metabolism) and lipid peroxidation in AD, suggesting anti-ferroptotic therapies may be efficacious in AD.


Subject(s)
Alzheimer Disease , Ferroptosis , Alzheimer Disease/genetics , Antiporters , Cystine , Glutamic Acid , Humans , Iron/metabolism , Lipid Peroxidation , Male
5.
Front Mol Biosci ; 7: 590979, 2020.
Article in English | MEDLINE | ID: mdl-33392254

ABSTRACT

Brain iron dyshomeostasis is a feature of Alzheimer's disease. Conventionally, research has focused on non-heme iron although degradation of heme from hemoglobin subunits can generate iron to augment the redox-active iron pool. Hemopexin both detoxifies heme to maintain iron homeostasis and bolsters antioxidant capacity via catabolic products, biliverdin and carbon monoxide to combat iron-mediated lipid peroxidation. The aim of the present study was to examine the association of cerebrospinal fluid levels (CSF) hemopexin and hemoglobin subunits (α and ß) to Alzheimer's pathological proteins (amyloid and tau), hippocampal volume and metabolism, and cognitive performance. We analyzed baseline CSF heme/iron proteins (multiplexed mass spectrometry-based assay), amyloid and tau (Luminex platform), baseline/longitudinal neuroimaging (MRI, FDG-PET) and cognitive outcomes in 86 cognitively normal, 135 mild-cognitive impairment and 66 Alzheimer's participants from the Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) cohort. Multivariate regression analysis was performed to delineate differences in CSF proteins between diagnosis groups and evaluated their association to amyloid and tau, neuroimaging and cognition. A p-value ≤ 0.05 was considered significant. Higher hemopexin was associated with higher CSF amyloid (implying decreased brain amyloid deposition), improved hippocampal metabolism and cognitive performance. Meanwhile, hemoglobin subunits were associated with increased CSF tau (implying increased brain tau deposition). When dichotomizing individuals with mild-cognitive impairment into stable and converters to Alzheimer's disease, significantly higher baseline hemoglobin subunits were observed in the converters compared to non-converters. Heme/iron dyshomeostasis is an early and crucial event in AD pathophysiology, which warrants further investigation as a potential therapeutic target.

6.
Sci Rep ; 9(1): 6343, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30992456

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

7.
Sci Rep ; 9(1): 3147, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816126

ABSTRACT

Metal/mineral dyshomeostasis has been implicated in the development of Alzheimer's disease (AD). The aim of the study was to investigate the difference in absolute and percentage levels of plasma phosphorus, calcium, iron, zinc, copper, selenium in cognitively normal (CN) and AD subjects. Total reflection X-ray fluorescence (TXRF) spectroscopy was used to detect plasma metals/minerals in CN and AD subjects (n = 44 per group). TXRF detected significantly increased plasma levels of phosphorus (p = 1.33 × 10-12) and calcium (p = 0.025) in AD compared to CN subjects, with higher phosphorus/calcium (p = 2.55 × 10-14) ratio in the former. Percentage concentrations calculated for phosphorus, calcium, iron, zinc, copper, selenium by dividing the concentration of each element by the total concentration of these elements and multiplying by 100%, demonstrated phosphorus was higher in AD compared to CN subjects, while calcium, iron, zinc, copper and selenium were lower in AD subjects, with area under the curves as high as 0.937 (p = 6 × 10-5) computed from receiver operating curves. With exclusion of high levels of phosphorus and calcium from percentage calculations, iron levels remained low in AD whereas zinc was higher in AD, and copper and selenium levels were similar. We demonstrate altered distribution of elements in the plasma of AD subjects with high interdependencies between elemental levels and propose the potential of TXRF measurements for disease monitoring.


Subject(s)
Alzheimer Disease/blood , Calcium/blood , Iron/blood , Phosphorus/blood , Zinc/blood , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Calcium, Dietary , Cognition/physiology , Copper/blood , Female , Humans , Magnesium/blood , Male , Selenium/blood , Spectrometry, X-Ray Emission , Trace Elements/blood
8.
Front Neurosci ; 13: 181, 2019.
Article in English | MEDLINE | ID: mdl-30906244

ABSTRACT

The disruption of iron metabolism and iron transport proteins have been implicated in the pathogenesis of Alzheimer's disease (AD). Serum melanotransferrin (MTf), a transferrin homolog capable of reversibly binding iron, has been proposed as a biochemical marker of AD. MTf has also been shown to be elevated in iron-rich reactive microglia near amyloid plaques in AD. We examined the association of CSF MTf to hippocampal volumes and cognitive tests in 86 cognitively normal, 135 mild cognitive impairment (MCI) and 66 AD subjects. CSF was collected at baseline for MTf, Aß, total-tau and phosphorylated-tau measurements. Serial cognitive testing with ADAS-Cog13, Rey's auditory visual learning test (RAVLT), mini-mental state examination (MMSE) were performed alongside hippocampal MRI volumetric analysis for up to 10 years after baseline measurements. High levels of baseline CSF MTf were positively associated with baseline hippocampal volume (R 2 = 22%, ß = 0.202, and p = 0.017) and RAVLT scores (R 2 = 7.30%, ß = -0.178, and p = 0.043) and negatively correlated to ADAS-Cog13 (R 2 = 17.3%, ß = 0.247, and p = 0.003) scores in MCI subjects. Interestingly, MCI subjects that converted to AD demonstrated significantly lower levels of CSF MTf (p = 0.020) compared to MCI non-converters at baseline. We suggest the diminished CSF MTf observed in MCI-converters to AD may arise from impaired transport of MTf from blood into the brain tissue/CSF and/or increased MTf export from the CSF into the blood arising from attenuated competition with reduced levels of CSF Aß. Further investigations are required to determine the source of CSF MTf and how brain MTf is regulated by cellular barriers, Aß and activated microglia that surround plaques in AD pathophysiology. In conclusion, low CSF MTf may identify those MCI individuals at risk of converting to AD.

9.
Front Aging Neurosci ; 11: 351, 2019.
Article in English | MEDLINE | ID: mdl-31920630

ABSTRACT

Microglia and astrocytes can quench metal toxicity to maintain tissue homeostasis, but with age, increasing glial dystrophy alongside metal dyshomeostasis may predispose the aged brain to acquire neurodegenerative diseases. The aim of the present study was to investigate age-related changes in brain metal deposition along with glial distribution in normal C57Bl/6J mice aged 2-, 6-, 19- and 27-months (n = 4/age). Using synchrotron-based X-ray fluorescence elemental mapping, we demonstrated age-related increases in iron, copper, and zinc in the basal ganglia (p < 0.05). Qualitative assessments revealed age-associated increases in iron, particularly in the basal ganglia and zinc in the white matter tracts, while copper showed overt enrichment in the choroid plexus/ventricles. Immunohistochemical staining showed augmented numbers of microglia and astrocytes, as a function of aging, in the basal ganglia (p < 0.05). Moreover, qualitative analysis of the glial immunostaining at the level of the fimbria and ventral commissure, revealed increments in the number of microglia but decrements in astroglia, in older aged mice. Upon morphological evaluation, aged microglia and astroglia displayed enlarged soma and thickened processes, reminiscent of dystrophy. Since glial cells have major roles in metal metabolism, we performed linear regression analysis and found a positive association between iron (R 2 = 0.57, p = 0.0008), copper (R 2 = 0.43, p = 0.0057), and zinc (R 2 = 0.37, p = 0.0132) with microglia in the basal ganglia. Also, higher levels of iron (R 2 = 0.49, p = 0.0025) and zinc (R 2 = 0.27, p = 0.040) were correlated to higher astroglia numbers. Aging was accompanied by a dissociation between metal and glial levels, as we found through the formulation of metal to glia ratios, with regions of basal ganglia being differentially affected. For example, iron to astroglia ratio showed age-related increases in the substantia nigra and globus pallidus, while the ratio was decreased in the striatum. Meanwhile, copper and zinc to astroglia ratios showed a similar regional decline. Our findings suggest that inflammation at the choroid plexus, part of the blood-cerebrospinal-fluid barrier, prompts accumulation of, particularly, copper and iron in the ventricles, implying a compromised barrier system. Moreover, age-related glial dystrophy/senescence appears to disrupt metal homeostasis, likely due to induced oxidative stress, and hence increase the risk of neurodegenerative diseases.

10.
Front Aging Neurosci ; 10: 65, 2018.
Article in English | MEDLINE | ID: mdl-29593525

ABSTRACT

Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.

11.
Neuron ; 96(1): 98-114.e7, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28957681

ABSTRACT

Schwann cell dedifferentiation from a myelinating to a progenitor-like cell underlies the remarkable ability of peripheral nerves to regenerate following injury. However, the molecular identity of the differentiated and dedifferentiated states in vivo has been elusive. Here, we profiled Schwann cells acutely purified from intact nerves and from the wound and distal regions of severed nerves. Our analysis reveals novel facets of the dedifferentiation response, including acquisition of mesenchymal traits and a Myc module. Furthermore, wound and distal dedifferentiated Schwann cells constitute different populations, with wound cells displaying increased mesenchymal character induced by localized TGFß signaling. TGFß promotes invasion and crosstalks with Eph signaling via N-cadherin to drive collective migration of the Schwann cells across the wound. Consistently, Tgfbr2 deletion in Schwann cells resulted in misdirected and delayed reinnervation. Thus, the wound microenvironment is a key determinant of Schwann cell identity, and it promotes nerve repair through integration of multiple concerted signals. VIDEO ABSTRACT.


Subject(s)
Cell Differentiation , Cellular Microenvironment/physiology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Nerve Regeneration/physiology , Peripheral Nerve Injuries/physiopathology , Schwann Cells/cytology , Schwann Cells/physiology , Animals , Cadherins/physiology , Cell Movement/physiology , Cells, Cultured , Female , Male , Mice , Mice, Transgenic , Peripheral Nerve Injuries/pathology , Primary Cell Culture , Rats , Rats, Transgenic , Receptors, Eph Family/physiology , Sciatic Nerve/injuries , Sciatic Nerve/physiology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/physiology
12.
Elife ; 52016 06 28.
Article in English | MEDLINE | ID: mdl-27350048

ABSTRACT

Glioblastomas (GBM) are aggressive and therapy-resistant brain tumours, which contain a subpopulation of tumour-propagating glioblastoma stem-like cells (GSC) thought to drive progression and recurrence. Diffuse invasion of the brain parenchyma, including along preexisting blood vessels, is a leading cause of therapeutic resistance, but the mechanisms remain unclear. Here, we show that ephrin-B2 mediates GSC perivascular invasion. Intravital imaging, coupled with mechanistic studies in murine GBM models and patient-derived GSC, revealed that endothelial ephrin-B2 compartmentalises non-tumourigenic cells. In contrast, upregulation of the same ephrin-B2 ligand in GSC enabled perivascular migration through homotypic forward signalling. Surprisingly, ephrin-B2 reverse signalling also promoted tumourigenesis cell-autonomously, by mediating anchorage-independent cytokinesis via RhoA. In human GSC-derived orthotopic xenografts, EFNB2 knock-down blocked tumour initiation and treatment of established tumours with ephrin-B2-blocking antibodies suppressed progression. Thus, our results indicate that targeting ephrin-B2 may be an effective strategy for the simultaneous inhibition of invasion and proliferation in GBM.


Subject(s)
Cell Movement , Cell Proliferation , Ephrin-B2/metabolism , Glioblastoma/pathology , Neoplastic Stem Cells/physiology , Animals , Heterografts , Humans , Intravital Microscopy , Mice
13.
Neurobiol Aging ; 36(2): 821-31, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25457554

ABSTRACT

There is an emerging evidence that growth factors may have a potential beneficial use in the treatment of Alzheimer's disease (AD) because of their neuroprotective properties and effects on neuronal proliferation. Basic fibroblast growth factor or fibroblast growth factor-2 (FGF2) is an anti-inflammatory, angiogenic, and neurotrophic factor that is expressed in many cell types, including neurons and glial cells. Here, we explored whether subcutaneous administration of FGF2 could have therapeutic effects in the APP 23 transgenic mouse, a model of amyloid pathology. FGF2 treatment attenuated spatial memory deficits, reduced amyloid-ß (Aß) and tau pathologies, decreased inducible nitric oxide synthase expression, and increased the number of astrocytes in the dentate gyrus in APP 23 mice compared with the vehicle-treated controls. The decrease in Aß deposition was associated with a reduction in the expression of BACE1, the main enzyme responsible for Aß generation. These results were confirmed in a neuroblastoma cell line, which demonstrated that incubation with FGF2 regulates BACE1 transcription. In addition, and in contrast with what has been previously published, the levels of FGF2 were reduced in postmortem brains from AD patients compared with controls. These data, therefore, suggest that systemic administration of FGF2 could have a potential therapeutic application in AD.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/genetics , Fibroblast Growth Factor 2/administration & dosage , Gene Expression/drug effects , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Brain/pathology , Cell Line , Disease Models, Animal , Female , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Humans , Injections, Subcutaneous , Male , Mice, Transgenic , Transcription, Genetic/drug effects , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...