Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.227
Filter
1.
J Med Phys ; 49(1): 95-102, 2024.
Article in English | MEDLINE | ID: mdl-38828065

ABSTRACT

Background: The efficacy of fractionation is significantly impacted by the colloidal particles' spontaneous absorption of laser beam radiation. The classification of silver nanoparticles during fragmentation processing is regulated through the collection of a combination of laser pulses with wavelengths of 1064 nm and 532 nm. Aims and Objectives: This study presents an investigation of the efficacy of a plant extract in conjunction with the incorporation of supplementary silver nanoparticles, as well as the generation of smaller-sized silver nanoparticles using laser fragmentation.and then measure thier toxity on the blood. Results: Ag nanoparticles were synthesized using pulsed laser fragmentation on green tea AgNPs. The synthesis process involved the utilization of a Q-switch Nd:YAG laser with wavelengths of 1064 nm and 532 nm, with energy ranging from 200 to 1000 mJ. Initially, a silver nano colloid was synthesized through the process of fragmented of the Ag target using the second harmonic generation of 532 nm at various energy levels. The optimal energy within the selected wavelengths was determined in order to facilitate the ultimate comparison. Transmission electron microscopy (TEM) was used to determine surface morphology and average particle size, while a spectrophotometer was used to analyses UV light's spectrum characteristics. The measurements focused on the surface plasmon resonance (SPR) phenomenon. The absorption spectra of silver nanoparticles exhibit distinct and prominent peaks at wavelengths of 405 nm and 415 nm. The mean diameter of the silver nanoparticles was found to be 16 nm and 20 nm, corresponding to wavelengths of 1064 nm and 532 nm, respectively. Conclusion: As a consequence, there is a decrease in the range of particle sizes and a decrease in the mean size to lower magnitudes, resulting in a very stable colloid. This particular methodology has demonstrated considerable efficacy in the production of colloidal suspensions with the intended particle dimensions. Moreover, by the analysis of nanoparticles in human blood, no discernible alterations in the blood constituents were seen, indicating their non-toxic nature.

2.
Sci Rep ; 14(1): 13422, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862538

ABSTRACT

This paper provides six metaheuristic algorithms, namely Fast Cuckoo Search (FCS), Salp Swarm Algorithm (SSA), Dynamic control Cuckoo search (DCCS), Gradient-Based Optimizer (GBO), Northern Goshawk Optimization (NGO), Opposition Flow Direction Algorithm (OFDA) to efficiently solve the optimal power flow (OPF) issue. Under standard and conservative operating settings, the OPF problem is modeled utilizing a range of objectives, constraints, and formulations. Five case studies have been conducted using IEEE 30-bus and IEEE 118-bus standard test systems to evaluate the effectiveness and robustness of the proposed algorithms. A performance evaluation procedure is suggested to compare the optimization techniques' strength and resilience. A fresh comparison methodology is created to compare the proposed methodologies with other well-known methodologies. Compared to previously reported optimization algorithms in the literature, the obtained results show the potential of GBO to solve various OPF problems efficiently.

3.
RSC Adv ; 14(27): 18970-18977, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38873548

ABSTRACT

Lysine-capped gold nanoclusters doped with silver (LYS@Ag/Au NCs) have been developed for the sensitive and selective "turn-off" fluorescence detection of histamine. This fluorescent probe demonstrates excellent stability and a high quantum yield of 9.45%. Upon addition of histamine, a positively charged biogenic amine, to the LYS@Ag/Au NCs fluorescent probe, its fluorescence emission is quenched due to electrostatic interaction, aggregation, and hydrogen bond formation. The probe exhibits good sensitivity for the determination of histamine within the range of 0.003-350 µM, with a detection limit of 0.001 µM based on a signal-to-noise ratio of 3. Furthermore, the probe has been applied to detect biogenic amines in complicated matrices, highlighting its potential for practical applications. However, interference from the analogue histidine was observed during analysis, which can be mitigated by using a Supelclean™ LC-SAX solid-phase extraction column for removal.

4.
Front Nutr ; 11: 1408804, 2024.
Article in English | MEDLINE | ID: mdl-38873567

ABSTRACT

Objectives: This study investigated the efficacy of a mixed beet-based supplement (BEET) versus placebo (PL) in countering inflammation during recovery from 2.25 h of intensive cycling in 20 male and female cyclists. A multi-omics approach was used that included untargeted proteomics and a targeted oxylipin panel. Methods: A randomized, placebo-controlled, double-blind, crossover design was used with two 2-week supplementation periods and a 2-week washout period. Supplementation periods were followed by a 2.25 h cycling bout at close to 70%VO2max. The BEET supplement provided 212 mg of nitrates per day, 200 mg caffeine from green tea extract, 44 mg vitamin C from Camu Camu berry, B-vitamins from quinoa sprouts (40% Daily Value for thiamin, riboflavin, niacin, and vitamin B6), and 2.5 g of a mushroom blend containing Cordyceps sinensis and Inonotus obliquus. Six blood samples were collected before and after supplementation (overnight fasted state), immediately post-exercise, and at 1.5 h-, 3 h-, and 24 h-post-exercise. Results: The 2.25 h cycling bout increased plasma levels of 41 of 67 oxylipins detected. BEET supplementation significantly increased plasma nitrate (NO3 -) and nitrite (NO2 -) (sum, NO3 - + NO2 -) concentrations (interaction effect, p < 0.001) and two anti-inflammatory oxylipins [18-hydroxyeicosapentaenoic acid (18-HEPE) and 4-hydroxy-docosahexanoic acid (4-HDoHE)]. The untargeted proteomics analysis identified 616 proteins (458 across all times points), and 2-way ANOVA revealed a cluster of 45 proteins that were decreased and a cluster of 21 that were increased in the BEET versus PL trials. Functional enrichment supported significant BEET-related reductions in inflammation-related proteins including several proteins related to complement activation, the acute phase response, and immune cell adhesion, migration, and differentiation. Discussion: Intake of a BEET-based supplement during a 2-week period was linked to higher plasma levels of NO3 - + NO2 -, elevated post-exercise levels of two anti-inflammatory oxylipins, and a significant decrease in a cluster of proteins involved in complement activation and inflammation. These data support that 2-weeks intake of nitrate from a mixed beet-based supplement moderated protein biomarkers of exercise-induced inflammation in athletes.

5.
Eur J Pediatr ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884820

ABSTRACT

Albuminuria has been considered the golden standard biomarker for diabetic kidney disease (DKD), but appears once significant kidney damage has already occurred. Angiopoietin-2 (Angpt-2) has been implicated in the development and progression of DKD in adults. We aimed to explore the association of serum Angpt-2 levels with DKD in children and adolescents with type 1 diabetes mellitus (T1DM) of short duration (3-5 years) and to evaluate the predictive power of serum Angpt-2 in the early detection of DKD prior to the microalbuminuric phase. The current cross-sectional study included 90 children divided into three age and sex-matched groups based on urinary albumin-to-creatinine ratio (UACR): microalbuminuric diabetic group (n = 30), non-albuminuric diabetic group (n = 30), and control group (n = 30). All participants were subjected to anthropometric measurements, serum Angpt-2 and fasting lipid profile (total cholesterol, triglycerides, LDL-C, HDL-C, and Non-HDL-C) assessment. Glomerular filtration rate was estimated based on serum creatinine (eGFR-Cr). Higher serum Angpt-2 levels were detected in both diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric diabetic group. There was no detected significant difference in eGFR-Cr values across the study groups. Serum Angpt-2 was positively correlated with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR, while UACR, HbA1c, and Non-HDL-C were independent predictors for serum Angpt-2. Serum Angpt-2 at level of 137.4 ng/L could discriminate between microalbuminuric and non-albuminuric diabetic groups with AUC = 0.960 and at level of 115.95 ng/L could discriminate between the non-albuminuric diabetic group and controls with AUC = 0.976.Conclusion: Serum Angpt-2 is a promising potent biomarker for the detection of early stage of DKD in childhood T1DM before albuminuria emerges. What is Known? • Urine albumin-to-creatinine ratio (UACR) and glomerular filtration rate (GFR) are the golden standard but late biomarkers for DKD. • Angiopoietin-2 has been implicated in the development and progression of DKD in adults with diabetes, but has not been explored in T1DM children with DKD. What is New? • Higher serum angiopoietin-2 was detected in diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric group. • Angiopoietin-2 correlated positively with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR. • Serum angiopoietin-2 is a promising early diagnostic biomarker for DKD in children with T1DM.

6.
Article in English | MEDLINE | ID: mdl-38700767

ABSTRACT

Recently, the scientific community's main goal is the long-term sustainability. Vegetable oils are easily accessible, non-depletable, and cost-effective materials. Vegetable oils are used to prepare polymeric alkyd surfaces. Novel and exciting designs of alkyd/graphene nanocomposites have provided eco-friendly thermal stability and protective coating surfaces. This review has briefly described important graphene-based alkyd nanocomposites along with their applications as protective coatings. These alkyd composites have high hydrophobicity, corrosion resistance, and durability. Graphene-based alkyd nanocoatings have many industrial and research interests because of their exceptional thermal and chemical properties. This work introduces an advanced horizon for developing protective nanocomposite coatings. The anti-corrosion properties and coatings' longevity may be improved by combining the synergistic effects of hybrid nanofillers introduced in this work.

7.
J Fluoresc ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691279

ABSTRACT

A novel ratiometric fluorescence probe was developed for the determination of azithromycin (AZM) and sulfide ions based on the differential modulation of red emissive carbon dots (R-N@CDs) and blue emissive carbon dots (B-NS@CDs). The addition of sulfide anion selectively quenched the red emission of R-N@CDs while the blue emission of B-NS@CDs unaffected. Upon subsequent introduction of AZM to this R-N@CDs@sulfide system, the quenched red fluorescence was restored. Comprehensive characterization of the CDs was performed using UV-Vis, fluorescence, FTIR spectroscopy, XPS, and TEM. The proposed method exhibited excellent sensitivity and selectivity, with limits of detection of 0.33 µM for AZM and 0.21 µM for sulfide. Notably, this approach enabled direct detection of sulfide without requiring prior modulation of the CDs with metal ions, as is common in other reported methods. The ratiometric probe was successfully applied for the determination of AZM in biological fluids and sulfide in environmental water samples with high selectivity. This work presents the first fluorometric method for the detection of AZM in biological fluids.

8.
Dev Cell ; 59(9): 1091-1093, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38714155

ABSTRACT

Polar localization of proteins is important for plant growth and development. Identifying the interactors of polarized proteins provides spatial information and cell-type functions. In this issue of Developmental Cell, Wallner et al. (2024) utilize opposing polarity domain proteins to identify interactors and their functions during cell division in Arabidopsis stomata.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Division , Cell Polarity , Plant Development , Cell Polarity/physiology , Cell Division/physiology , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/cytology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Development/physiology
9.
Anal Methods ; 16(20): 3287-3296, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38738631

ABSTRACT

This study introduces a novel approach for the simultaneous determination of topotecan (TOP) and pantoprazole (PNT), two drugs whose interaction is critical in clinical applications. The significance of this study originates from the need to understand the pharmacokinetic changes of TOP after PNT administration, which can inform necessary dose adjustments of TOP. To achieve this, nitrogen blue emissive carbon dots (B@NCDs) were produced and employed due to their unique fluorescent properties. When TOP is added to B@NCDs, it exhibits strong native fluorescence at 545 nm without influencing the B@NCDs' fluorescence at 447 nm. Conversely, PNT causes quenching of B@NCDs fluorescence, a property that enables the distinct detection of both drugs. The B@NCDs were fully characterized using different techniques, including ultraviolet-visible spectrophotometry, fluorescence analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), and FTIR spectroscopy. The proposed method demonstrated excellent linearity, selectivity, and sensitivity, with low detection limits (LOD, S/N = 3); 0.0016 µg mL-1 for TOP and 0.36 µg mL-1 for PNT. Applied to spiked rabbit plasma samples, this method offers a new approach for evaluating the pharmacokinetic interaction between TOP and PNT. It enables the determination of all pharmacokinetic parameters of TOP before and after coadministration with PNT, providing essential insights into whether dose adjustments are necessary. This research not only contributes to the field of drug monitoring and interaction studies but also exemplifies the potential of B@NCDs in complex biological matrices, paving the way for further pharmacological and therapeutic applications.


Subject(s)
Carbon , Pantoprazole , Quantum Dots , Topotecan , Pantoprazole/pharmacokinetics , Pantoprazole/chemistry , Topotecan/pharmacokinetics , Topotecan/chemistry , Topotecan/analysis , Carbon/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Animals , Limit of Detection , Fluorescent Dyes/chemistry
10.
Int J Med Sci ; 21(6): 1165-1175, 2024.
Article in English | MEDLINE | ID: mdl-38774756

ABSTRACT

Oral cancer is the most heterogeneous cancer at clinical and histological levels. PI3K/AKT/mTOR pathway was identified as one of the most commonly modulated signals in oral cancer, which regulates major cellular and metabolic activity of the cell. Thus, various proteins of PI3K/AKT/mTOR pathway were used as therapeutic targets for oral cancer, to design more specific drugs with less off-target toxicity. This review sheds light on the regulation of PI3K/AKT/mTOR, and its role in controlling autophagy and associated apoptosis during the progression and metastasis of oral squamous type of malignancy (OSCC). In addition, we reviewed in detail the upstream activators and the downstream effectors of PI3K/AKT/mTOR signaling as potential therapeutic targets for oral cancer treatment.


Subject(s)
Autophagy , Mouth Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Autophagy/physiology , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics
11.
Anal Methods ; 16(19): 3125-3130, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38700061

ABSTRACT

A new fluorescence sensing approach has been proposed for the precise determination of the anti-cancer drug oxaliplatin (Oxal-Pt). This method entails synthesizing blue-emitting copper nanoclusters (CuNCs) functionalized with bovine serum albumin (BSA) as the stabilizing agent. Upon excitation at 360 nm, the resultant probe exhibits emission at 460 nm. Notably, the fluorescence response of BSA@CuNCs substantially increases upon incubation with Oxal-Pt due to multiple binding interactions between the drug and the fluorescent probe. These interactions involve hydrogen bonding, hydrophobic interaction, and the high affinity between the SH groups (cysteine residues of BSA) and platinum (in Oxal-Pt). Consequently, this interaction induces aggregation-induced emission enhancement (AIEE) of BSA@CuNCs. The probe demonstrates a broad response range from 0.08 to 140.0 µM, along with a low detection limit of 20.0 nM, determined based on a signal-to-noise ratio of 3. Furthermore, the probe effectively detects Oxal-Pt in injections, human serum, and urine samples, yielding acceptable results. This study represents a significant advancement in the development of a straightforward and efficient sensor for monitoring platinum-containing anti-cancer drugs during chemotherapy.


Subject(s)
Antineoplastic Agents , Copper , Drug Monitoring , Fluorescent Dyes , Oxaliplatin , Serum Albumin, Bovine , Spectrometry, Fluorescence , Oxaliplatin/chemistry , Serum Albumin, Bovine/chemistry , Copper/chemistry , Humans , Antineoplastic Agents/chemistry , Drug Monitoring/methods , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Animals , Limit of Detection , Neoplasms/drug therapy , Cattle
12.
Sci Rep ; 14(1): 11944, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789541

ABSTRACT

Copper can be susceptible to corrosion in acidic cleaning solutions for desalination system, especially if the solution is highly concentrated or if the cleaning process involves extended exposure to the acid. In the current work, Aloe ferox Mill (AFM extract) can be used as a natural origin corrosion inhibitor for copper in 1.0 M HCl solution. The corrosion mitigation qualities of AFM extract were assessed by means of electrochemical, gravimetric, and surface examinations. AFM extract is a mixed-type inhibitor, based on polarization research findings. The inhibitory effectiveness of AFM extract rises with concentration, reaching its maximum level (93.3%) at 250 mg L-1. The inclusion of AFM extract raises the activation energy for the corrosion reaction from 7.15 kJ mol-1 (blank solution) to 28.6 kJ mol-1 (at 250 mg L-1 AFM extract).

13.
Open Vet J ; 14(4): 952-961, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38808291

ABSTRACT

Telehealth is a rapidly developing field of veterinary medicine, particularly during and after the coronavirus 2019 (COVID-19) pandemic. The world and animal owners' expectations are changing to the point where veterinary practice will need to adapt due to information technology advancements. This narrative review describes the status, benefits, technology basics, applications, limitations, and legal aspects of veterinary telemedicine over the globe. Veterinary telemedicine is a service alongside other veterinary services that meets client needs, delivers quality medicine, and improves animal welfare. The most frequently utilized veterinary telemedicine applications include teleradiology, telesonography, teledentistry, telecardiology, telerehabilitation, anesthesia teleconsultation, telehospice and telepalliative care, telecytology, tele-endoscpy, teledermatology, tele-ophthalmology, tele-behavior therapy, and veterinary education and training. Veterinary telemedicine has a bright near future and will impact veterinary medicine and animal welfare due to its numerous advantages. These advantages include its low cost, availability, involvement in veterinary health care, online payment, and effectiveness in many clinical situations such as follow-up after an in-person examination, inspection of surgical sites, or mobility. Nevertheless, veterinary telemedicine should receive more attention from veterinary professional regulatory bodies in all countries. Moreover, it is necessary to conduct more studies to evaluate how telehealth is beginning to improve veterinary care, particularly for underserved regions.


Subject(s)
Animal Welfare , COVID-19 , Telemedicine , Veterinary Medicine , Animals , Humans , Animal Welfare/legislation & jurisprudence , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Veterinary Medicine/trends
14.
Sci Rep ; 14(1): 10766, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730028

ABSTRACT

In this work, we study the efficiency of N1, N3-dibenzyl-N1, N1, N3, N3-tetramethylpropane-1,3-diaminium chloride, as anticorrosion. This compound exhibits potential as a prospective remedy to stop the deterioration of carbon steel caused by corrosion in 1.0 M HCl. The synthesis of this compound is described in a comprehensive manner, and its composition is supported by a range of precise analytical approaches such as elemental analysis, and mass spectroscopy. Based on the findings of the investigation, the synthesized Gemini ionic liquid demonstrates a robust capacity to slow down the rate at which the metal corrodes. The Prepared compound was evaluation by electrochemical and morphology study. Our results revealed that elevating the inhibitor concentration led to an augmentation in inhibition effectiveness, reaching up to 94.8% at 200 ppm of the synthesized compound at 298 K. It is crucial to emphasize that the recently prepared Gemini ionic liquid is consistent with the Langmuir adsorption model and function as a mixed inhibitor, participating in the physio-chemisorption process of adsorption.

15.
Sci Rep ; 14(1): 8863, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632269

ABSTRACT

Ethylene vinyl acetate (EVA) copolymers are widely employed as pour point depressants to enhance the flow properties of crude oil. However, EVA copolymers have limitations that necessitate their development. This work investigated the modification of EVA via gamma radiation-induced grafting of butyl acrylate (BuA) monomers and the evaluation of grafted EVA as a pour point depressant for crude oil. The successful grafting of poly(butyl acrylate) p(BuA) onto EVA was verified through grafting parameters, FTIR spectroscopy, and 1H NMR spectroscopy. Treating crude oil with 3000 ppm of (EVA)0kGy, (EVA)50kGy, and (1EVA:3BuA)50kGy yielded substantial reductions in pour point of 24, 21, and 21 °C, respectively. Also, rheological characterization demonstrated improving evidenced by a viscosity reduction of 76.20%, 67.70%, and 71.94% at 25 °C, and 83.16%, 74.98%, and 81.53% at 12 °C. At low dosages of 1000 ppm, the EVA-g-p(BuA) exhibited superior pour point reductions compared to unmodified EVA, highlighting the benefit of incorporating p(BuA) side chains. The grafted EVA copolymers with p(BuA) side chains showed excellent potential as crude oil flow improvers by promoting more effective adsorption and co-crystallization with paraffin wax molecules.

16.
J Sci Food Agric ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563620

ABSTRACT

BACKGROUND: Most microorganisms that cause food decay and the lower the shelf life of foods are fungi. Nanotechnologies can combat various diseases and deal with the application of nanomaterial to target cells or tissues. In this study selenium nanoparticles (Se-NPs) were synthesized using ascorbic acid and characterized by ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction and zeta potential. The different concentrations of As/Se-NPs were tested against various fungi, including Alternaria linicola, Alternaria padwickii, Botrytis cinerea, Bipolaris sp., Cephalosporium acremonium, Fusarium moniliform and Fusarium semitectum. This study tested the influence of coated As/Se-NPs on healthy strawberry fruits and those infected with Botrytis cinerea during 16 days of storage, with regard to shelf life, decay percentage, weight loss, total titratable acidity percentage, total soluble solids content (TSS) and anthocyanin content. RESULTS: Energy-dispersive X-ray analysis showed only two elements: selenium and oxygen. TEM images showed that the nanoparticles ranged in size between 26 to 39 nm and were rhombohedral in shape. Se-NPs showed antifungal activity against all tested fungi, the most effective being against Botrytis cinerea, Cephalosporium acremonium and Fusarium semitectum. During storage periods of strawberries fruits coated with As/Se-NPs, the shelf life was increased, and the number of decaying fruits was less than in control (uncoated) and coated infected fruits. The decline in weight loss was lower in coated fruits than in control fruits. CONCLUSION: These findings demonstrated that As/Se-NPs could effectively maintain the postharvest quality of strawberries, even when the fruit was infected with B. cinerea. © 2024 Society of Chemical Industry.

18.
Open Vet J ; 14(1): 545-552, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633155

ABSTRACT

Background: Nanoparticles are regarded as magical bullets because of their exclusive features. Recently, the usage of nanoparticles has progressed in almost all aspects of science and technology due to its ability to revolutionize certain fields. In the field of food science and technology, the application of nanoparticles is being researched in many various areas thus provides the dairy industry with a variety of new attitudes for developing the quality, prolong shelf life, ensure the safety and healthiness of foods. Aim: This study aimed to focus on the application of some inorganic metal oxide nanoparticles (zinc oxide (ZnO), magnesium oxide (MgO), and calcium oxide (CaO)) to control E. coli in raw milk and ensure its safety. Methods: The antibacterial action of certain nanoparticles (ZnO, MgO, and CaO) with multiple concentrations (0.1, 0.05, 0.025, 0.0125, 0.006, and 0.003 mg/ml) was evaluated against E. coli strains in ultra heat treated (UHT) milk samples. Also, storage temperature and storage period effects were studied. Results: The findings of the current research revealed that inorganic metal oxide nanoparticles had a significant antibacterial role against E. coli, in the following order; ZnO, MgO, and CaO, respectively. The antibacterial effect of inorganic metal oxide nanoparticles is more noticeable at lower temperatures. Conclusion: Inorganic metal nanoparticles can be used in the food industry for the purpose of the control of E. coli, and extension of the shelf life of dairy products.


Subject(s)
Calcium Compounds , Metal Nanoparticles , Zinc Oxide , Animals , Escherichia coli , Magnesium Oxide , Milk , Oxides , Anti-Bacterial Agents
19.
Sci Rep ; 14(1): 7215, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38531938

ABSTRACT

The purpose of this research was to examine the viability of applying a flawless polyaniline coating on steel spearheads to preserve them and protect them from corrosion. The spearpoints, thought to be archaeologically significant, were acquired from the Military Museum in Al-Qala, Egypt. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy were used to characterize the spearheads chemical composition and microstructure (EDX). The spearheads were determined to be constructed of steel and to have a coating of ferric oxide and other corrosion products on their exteriors. After that, a flawless polyaniline coating was electrochemically deposited onto the spearpoints in a way that was both quick and cheap. Many types of corrosion tests, such as electrochemical impedance spectroscopy and potentiodynamic polarization (PDP) readings, were used to determine the coating's effectiveness. The steel spearheads' findings revealed a significant improvement in their resistance to corrosion after being coated with flawless polyaniline. The coating served as a barrier, blocking out water and other corrosive substances and slowing the buildup of corrosion byproducts on the spearpoints. In conclusion, our research shows that a flawless polyaniline coating may be an effective anti-corrosion treatment for ancient steel artifacts. The approach is straightforward, cheap, and readily scalable for massive conservation efforts.

20.
J Med Entomol ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493302

ABSTRACT

This study aimed to explore the rate of decomposition of rabbit carcasses and the succession pattern of the associated dipteran flies outdoor, indoor, and on the roof of a 4-story building during the summer and winter. A total of 6,069 flies were recorded, with 30.91% reported as 2 waves outdoor and on the roof in the summer and 69.09% as 4 waves outdoor in the winter. The roof showed the most flies in the summer but the least in the winter, whereas the outdoor showed the most in the winter but the least in the summer. The ground and first floors showed the most indoor flies, while the second and third floors showed the least in both seasons. Indoor carcasses decomposed slower than those outdoor, and those on the second and third floors decomposed slower than those on the ground and first floors. Ten fly species from 8 families were identified in the winter, compared to 6 from 5 families in the summer. The most abundant species was Musca domestica Linnaeus (Muscidae) on the roof in the summer, while it was Chrysomya albiceps (Wiedemannn) (Calliphoridae) outdoor in the winter. The rare species (singletons) were Musca sp. (Muscidae) and Megaselia scalaris (Loew) (Phoridae) on the first floor in both seasons, Scaptomyza pallida (Zetterstedt) (Drosophilidae) on the ground floor in the summer, and Atherigona orientalis Schiner (Muscidae) outdoor in the winter. These data highlight the variance in carcass decomposition and fly composition across outdoor, indoor, and the roof of human dwellings, which could be of forensic importance.

SELECTION OF CITATIONS
SEARCH DETAIL
...