Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302664, 2024.
Article in English | MEDLINE | ID: mdl-38820359

ABSTRACT

The ever-increasing demand for electricity has presented a grave threat to traditional energy sources, which are finite, rapidly depleting, and have a detrimental environmental impact. These shortcomings of conventional energy resources have caused the globe to switch from traditional to renewable energy sources. Wind power significantly contributes to carbon-free energy because it is widely accessible, inexpensive, and produces no harmful emissions. Better and more efficient renewable wind power production relies on accurate wind speed predictions. Accurate short-term wind speed forecasting is essential for effectively handling unsteady wind power generation and ensuring that wind turbines operate safely. The significant stochastic nature of the wind speed and its dynamic unpredictability makes it difficult to forecast. This paper develops a hybrid model, L-LG-S, for precise short-term wind speed forecasting to address problems in wind speed forecasting. In this research, state-of-the-art machine learning and deep learning algorithms employed in wind speed forecasting are compared with the proposed approach. The effectiveness of the proposed hybrid model is tested using real-world wind speed data from a wind turbine located in the city of Karachi, Pakistan. Moreover, the mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE) are used as accuracy evaluation indices. Experimental results show that the proposed model outperforms the state-of-the-art legacy models in terms of accuracy for short-term wind speed in training, validation and test predictions by 98% respectively.


Subject(s)
Forecasting , Wind , Forecasting/methods , Models, Theoretical , Renewable Energy , Algorithms , Machine Learning
2.
Sensors (Basel) ; 23(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37631678

ABSTRACT

Fog computing extends mobile cloud computing facilities at the network edge, yielding low-latency application execution. To supplement cloud services, computationally intensive applications can be distributed on resource-constrained mobile devices by leveraging underutilized nearby resources to meet the latency and bandwidth requirements of application execution. Building upon this premise, it is necessary to investigate idle or underutilized resources that are present at the edge of the network. The utilization of a microservice architecture in IoT application development, with its increased granularity in service breakdown, provides opportunities for improved scalability, maintainability, and extensibility. In this research, the proposed schedule tackles the latency requirements of applications by identifying suitable upward migration of microservices within a multi-tiered fog computing infrastructure. This approach enables optimal utilization of network edge resources. Experimental validation is performed using the iFogSim2 simulator and the results are compared with existing baselines. The results demonstrate that compared to the edgewards approach, our proposed technique significantly improves the latency requirements of application execution, network usage, and energy consumption by 66.92%, 69.83%, and 4.16%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...