Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Heliyon ; 10(3): e25208, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322896

ABSTRACT

A 42 day factorial trial (3x2) was designed to evaluate the effect of short-term starvation with different feeding frequencies on performance, feed utilization, physiological status and appetite responses of red hybrid tilapia fingerlings. Eighteen plastic tanks with a capacity of (55 L) were used to accomplish this work. Fingerlings with an average initial weight of 23 g ± 0.2 (SE) were randomly stocked at a rate of 8 fingerlings/aquarium. Six groups were designated as the following: II/ED: fish was fed twice every day; IV/ED: fish fed four times every day; II/EOD: fish fed twice every other day (alternate-day feeding or one day of feeding followed by another of fasting); IV/EOD: was fed four times every other day; II/EO3D: fish fed twice every other three days (three day of feeding followed by another of fasting) and IV/EO3D: fish fed four times every other three days. Fish were fed on commercial diets 30 % protein (4 % of biomass). Results showed insignificant differences between fish fed every other day and those fed every day in some growth indicators. In the same trend, the interaction between feed deprivation and feeding frequency cleared that fingerlings of IV/EOD did not significantly differ with those fed every day in growth indices. Moreover this treatment was the best in feed conversion efficiency and several physiological indicators.

2.
Heliyon ; 9(9): e19602, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809758

ABSTRACT

A feeding trial was conducted to investigate the effect of fermented soybean meal with Bacillus subtilis bacteria on growth performance, feed utilization, carcass composition, and hematological, and histological section of the liver and intestine of Nile tilapia Oreochromis niloticus fingerlings. Commercial soybean meal (SBM) containing 44% Crude Protein (CP) was fermented using the solid-state fermentation method which depended on autoclaving of SBM, then bacterial treatment injection by Bacillus subtilis, and finally incubation at 40C for 72 h then autoclaved to stop the growth of bacteria. Five isonitrogenous (25% crude protein) and isocaloric (4.4 kcal\g gross energy) experimental fish meal-free diets were formulated to compare with a common control diet containing fishmeal and unfermented soybean meal. Diets without fish meal contain fermented soybean meal (FSM) as a sole protein, FSM with corn gluten (CG), FSM with free amino acid methionine (Meth), FSM with corn gluten and methionine, and unfermented soybean meal. Eighteen glass aquaria, 80-L net volume, were used to stock 10 fingerlings (10.0 ± 0.1 g/fish) in each aquarium in the replicates group. The feed amount was given three times daily, six days a week throughout the 98 days experimental period. Fish were weighed biweekly and feed amounts were adjusted based on the new fish weight. Bacterial fermentation enhanced the protein content of commercial soybean meals by 6%. The crude protein of fermented soybean meal increased from 43.44% to 50.67%. Used of FSM as a sole dietary protein source resulted in a decrease in growth rate and feed utilization. However, the incorporation of FSM with corn gluten, and/or methionine amino acid led to an improvement in the performance of fish. Finally, the best final body weight, weight gain, specific growth rate, protein efficiency ratio, and protein productive value were recorded by a fish-fed mixed plant protein diet (FSM + CG + Meth). Also, Hematocrit and red blood cells were not significantly affected including the FSM.

4.
Sci Rep ; 13(1): 13593, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37604957

ABSTRACT

The California bearing ratio (CBR) is one of the basic subgrade strength characterization properties in road pavement design for evaluating the bearing capacity of pavement subgrade materials. In this research, a new model based on the Gaussian process regression (GPR) computing technique was trained and developed to predict CBR value of hydrated lime-activated rice husk ash (HARHA) treated soil. An experimental database containing 121 data points have been used. The dataset contains input parameters namely HARHA-a hybrid geometrical binder, liquid limit, plastic limit, plastic index, optimum moisture content, activity and maximum dry density while the output parameter for the model is CBR. The performance of the GPR model is assessed using statistical parameters, including the coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), Relative Root Mean Square Error (RRMSE), and performance indicator (ρ). The obtained results through GPR model yield higher accuracy as compare to recently establish artificial neural network (ANN) and gene expression programming (GEP) models in the literature. The analysis of the R2 together with MAE, RMSE, RRMSE, and ρ values for the CBR demonstrates that the GPR achieved a better prediction performance in training phase with (R2 = 0.9999, MAE = 0.0920, RMSE = 0.13907, RRMSE = 0.0078 and ρ = 0.00391) succeeded by the ANN model with (R2 = 0.9998, MAE = 0.0962, RMSE = 4.98, RRMSE = 0.20, and ρ = 0.100) and GEP model with (R2 = 0.9972, MAE = 0.5, RMSE = 4.94, RRMSE = 0.202, and ρ = 0.101). Furthermore, the sensitivity analysis result shows that HARHA was the key parameter affecting the CBR.

5.
Front Mol Biosci ; 10: 1169658, 2023.
Article in English | MEDLINE | ID: mdl-37342207

ABSTRACT

Despite the identification of numerous molecular pathways modulating cardiac hypertrophy its pathogenesis is not completely understood. In this study we define an unexpected role for Fibin ("fin bud initiation factor homolog") in cardiomyocyte hypertrophy. Via gene expression profiling in hypertrophic murine hearts after transverse aortic constriction we found a significant induction of Fibin. Moreover, Fibin was upregulated in another mouse model of cardiac hypertrophy (calcineurin-transgenics) as well as in patients with dilated cardiomyopathy. Immunoflourescence microscopy revealed subcellular localization of Fibin at the sarcomeric z-disc. Overexpression of Fibin in neonatal rat ventricular cardiomyocytes revealed a strong anti-hypertrophic effect through inhibiting both, NFAT- and SRF-dependent signalling. In contrast, transgenic mice with cardiac-restricted overexpression of Fibin developed dilated cardiomyopathy, accompanied by induction of hypertrophy-associated genes. Moreover, Fibin overexpression accelerated the progression to heart failure in the presence of prohypertrophic stimuli such as pressure overload and calcineurin overexpression. Histological and ultrastructural analyses surprisingly showed large protein aggregates containing Fibin. On the molecular level, aggregate formation was accompanied by an induction of the unfolded protein response subsequent UPR-mediated apoptosis and autophagy. Taken together, we identified Fibin as a novel potent negative regulator of cardiomyocyte hypertrophy in vitro. Yet, heart-specific Fibin overexpression in vivo causes development of a protein-aggregate-associated cardiomyopathy. Because of close similarities to myofibrillar myopathies, Fibin represents a candidate gene for cardiomyopathy and Fibin transgenic mice may provide additional mechanistic insight into aggregate formation in these diseases.

6.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108423

ABSTRACT

Trillions of microbes in the human intestinal tract, including bacteria, viruses, fungi, and protozoa, are collectively referred to as the gut microbiome. Recent technological developments have led to a significant increase in our understanding of the human microbiome. It has been discovered that the microbiome affects both health and the progression of diseases, including cancer and heart disease. Several studies have indicated that the gut microbiota may serve as a potential target in cancer therapy modulation, by enhancing the effectiveness of chemotherapy and/or immunotherapy. Moreover, altered microbiome composition has been linked to the long-term effects of cancer therapy; for example, the deleterious effects of chemotherapy on microbial diversity can, in turn, lead to acute dysbiosis and serious gastrointestinal toxicity. Specifically, the relationship between the microbiome and cardiac diseases in cancer patients following therapy is poorly understood. In this article, we provide a summary of the role of the microbiome in cancer treatment, while also speculating on a potential connection between treatment-related microbial changes and cardiotoxicity. Through a brief review of the literature, we further explore which bacterial families or genera were differentially affected in cancer treatment and cardiac disease. A deeper understanding of the link between the gut microbiome and cardiotoxicity caused by cancer treatment may help lower the risk of this critical and potentially fatal side effect.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neoplasms , Humans , Cardiotoxicity/etiology , Intestines/microbiology , Neoplasms/drug therapy , Bacteria , Dysbiosis/chemically induced
7.
Materials (Basel) ; 15(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36431495

ABSTRACT

The structural, electrical, and magneto-elastic properties of lanthanide base nitride (Ln = Dy-Lu) anti-perovskites were investigated using density functional theory (DFT). The reported structural outcomes are consistent with the experiment and decrease from Dy to Lu due to the decrease ofatomic radii of Ln atoms. According to the electronic band profile, the metallic characteristics of these compounds are due to the crossing over of Ln-f states at the Fermi level and are also supported by electrical resistivity. The resistivity of these compounds at room temperature demonstrates that they are good conductors. Their mechanical stability, anisotropic, load-bearing, and malleable nature are demonstrated by their elastic properties. Due to their metallic and load-bearing nature, in addition to their ductility, these materials are suitable as active biomaterials, especially when significant acting loads are anticipated, such as those experienced by such heavily loaded implants as hip and knee endo-prostheses, plates, screws, nails, dental implants, etc. In thesecases, appropriate bending fatigue strength is required in structural materials for skeletal reconstruction. Magnetic properties show that all compounds are G-type anti-ferromagnetic, with the Neel temperatures ranging from 24 to 48 K, except Lu3Nin, which is non-magnetic. Due to their anti-ferromagnetic structure, magnetic probes cannot read data contained in anti-ferromagnetic moments, therefore, data will be unchanged by disrupted magnetic field. As a result, these compounds can be the best candidates for magnetic cloaking devices.

8.
Nanomaterials (Basel) ; 12(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36145037

ABSTRACT

The efficiency of photovoltaics (PVs) is related to cover material properties and light management in upper layers of the device. This article investigates new polyimide (PI) covers for PVs that enable light trapping through their induced surface texture. The latter is attained via a novel strategy that involves multi-directional rubbing followed by plasma exposure. Atomic force microscopy (AFM) is utilized to clarify the outcome of the proposed light-trapping approach. Since a deep clarification of either random or periodic surface morphology is responsible for the desired light capturing in solar cells, the elaborated texturing procedure generates a balance among both discussed aspects. Multidirectional surface abrasion with sand paper on pre-defined directions of the PI films reveals some relevant modifications regarding both surface morphology and the resulted degree of anisotropy. The illuminance experiments are performed to examine if the created surface texture is suitable for proper light propagation through the studied PI covers. The adhesion among the upper layers of the PV, namely the PI and transparent electrode, is evaluated. The correlation between the results of these analyses helps to identify not only adequate polymer shielding materials, but also to understand the chemical structure response to new design routes for light-trapping, which might significantly contribute to an enhanced conversion efficiency of the PV devices.

9.
Data Brief ; 44: 108498, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35966944

ABSTRACT

We recently reported the correlation of gut bacterial diversity with heart failure using a mouse model of heart failure due to pressure overload induced by transverse aortic constriction (TAC). We found that gut the bacterial diversity is significantly altered and is directly correlated to the severity of heart failure (Heart Failure Severity Closely Correlates with Intestinal Dysbiosis and Subsequent Metabolomic Alterations (Spehlmann, 2022). In addition, stool samples that were collected for the gut microbial diversity analysis, we dissected ileum from the mice after 42 days of TAC. The total DNA was extracted to identify the bacterial diversity resided in ileum using 16S rRNA gene amplicon shotgun sequencing and downstream bioinformatics analysis to determine if it is correlated to the heart failure.

10.
ACS Omega ; 7(28): 24396-24414, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35874249

ABSTRACT

Nanoscale nonlinear optical (NLO) materials have received huge attention of the scientists in current decades because of their enormous applications in optics, electronics, and telecommunication. Different studies have been conducted to tune the nonlinear optical response of the nanomaterials. However, the role of alkali metal (Li, Na, K) doping on triggering the nonlinear optical response of nanomaterials by converting their centrosymmetric configuration into noncentrosymmetric configuration is rarely studied. Therefore, to find a novel of way of making NLO materials, we have employed density functional theory (DFT) calculations, which helped us to explore the effect of alkali metal (Li, Na, K) doping on the nonlinear optical response of tetragonal graphene quantum dots (TGQDs). Ten new complexes of alkali metal doped TGQDs are designed theoretically. The binding energy calculations revealed the stability of alkali metal doped TGQDs. The NLO responses of newly designed complexes are evaluated by their polarizability, first hyperpolarizability (ßo), and frequency dependent hyperpolarizabilities. The Li@r8a exhibited the highest first hyperpolarizability (ßo) value of 5.19 × 105 au. All these complexes exhibited complete transparency in the UV region. The exceptionally high values of ßo of M@TGQDs are accredited to the generation of diffuse excess electrons, as indicated by NBO analysis and PDOS. NCI analysis is accomplished to examine the nature of bonding interactions among alkali metal atoms and TGQDs. Our results suggest alkali metal doped TGQD complexes as potential candidates for nanoscale NLO materials with sufficient stability and enhanced NLO response. This study will open new doors for making giant NLO response materials for modern hi-tech applications.

11.
Circulation ; 146(5): 412-426, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35862076

ABSTRACT

BACKGROUND: The human heart has limited capacity to generate new cardiomyocytes and this capacity declines with age. Because loss of cardiomyocytes may contribute to heart failure, it is crucial to explore stimuli of endogenous cardiac regeneration to favorably shift the balance between loss of cardiomyocytes and the birth of new cardiomyocytes in the aged heart. We have previously shown that cardiomyogenesis can be activated by exercise in the young adult mouse heart. Whether exercise also induces cardiomyogenesis in aged hearts, however, is still unknown. Here, we aim to investigate the effect of exercise on the generation of new cardiomyocytes in the aged heart. METHODS: Aged (20-month-old) mice were subjected to an 8-week voluntary running protocol, and age-matched sedentary animals served as controls. Cardiomyogenesis in aged hearts was assessed on the basis of 15N-thymidine incorporation and multi-isotope imaging mass spectrometry. We analyzed 1793 cardiomyocytes from 5 aged sedentary mice and compared these with 2002 cardiomyocytes from 5 aged exercised mice, followed by advanced histology and imaging to account for ploidy and nucleation status of the cell. RNA sequencing and subsequent bioinformatic analyses were performed to investigate transcriptional changes induced by exercise specifically in aged hearts in comparison with young hearts. RESULTS: Cardiomyogenesis was observed at a significantly higher frequency in exercised compared with sedentary aged hearts on the basis of the detection of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes. No mononucleated/diploid 15N-thymidine-labeled cardiomyocyte was detected in sedentary aged mice. The annual rate of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes in aged exercised mice was 2.3% per year. This compares with our previously reported annual rate of 7.5% in young exercised mice and 1.63% in young sedentary mice. Transcriptional profiling of young and aged exercised murine hearts and their sedentary controls revealed that exercise induces pathways related to circadian rhythm, irrespective of age. One known oscillating transcript, however, that was exclusively upregulated in aged exercised hearts, was isoform 1.4 of regulator of calcineurin, whose regulation and functional role were explored further. CONCLUSIONS: Our data demonstrate that voluntary running in part restores cardiomyogenesis in aged mice and suggest that pathways associated with circadian rhythm may play a role in physiologically stimulated cardiomyogenesis.


Subject(s)
Myocytes, Cardiac , Physical Conditioning, Animal , Animals , Calcineurin/metabolism , Humans , Infant , Mice , Myocytes, Cardiac/cytology , Thymidine/metabolism
12.
Front Mol Biosci ; 9: 864839, 2022.
Article in English | MEDLINE | ID: mdl-35651814

ABSTRACT

Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related deaths worldwide with chronic hepatitis C virus (HCV) infection as a major risk factor of HCC. Circulating microRNAs are deregulated in HCC and are candidate biomarkers. The aim of this study was to explore the expression profile of miRNA-122, miR-483, and miR-335 in the serum of HCV-related hepatocellular carcinoma (HCC). 90 HCV-related hepatocellular carcinoma (HCC) patients, 90 non-malignant HCV patients, and 60 healthy controls were included. Serum microRNAs were measured by a qRT-PCR custom array. The expression levels of miR-122 and miR-483 were upregulated in HCC patients, while the miR-335 expression level was downregulated versus controls and HCV groups. Receiver-operating characteristic (ROC) curve analysis was created to examine miRNAs. miR-483 presented the best diagnostic potential because it showed the highest diagnostic accuracy for distinguishing HCV-related HCC patients from controls (AUC = 0.98) with 100% sensitivity. Moreover, there was obvious prognostic power in distinguishing HCV from HCC (AUC = 0.95) with 88% sensitivity. In conclusion, studied microRNAs (miR-122, miR-483, and miR-335) could serve as potential non-invasive early diagnostic biomarkers for HCC, and we identified a panel of three serum microRNAs with high accuracy in HCC diagnosis. Additional studies are required to confirm this panel and test its prognostic significance.

13.
RSC Adv ; 12(25): 16029-16045, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35733683

ABSTRACT

Strategies for designing remarkable nonlinear optical materials using excess electron compounds are well recognized in literature to enhance the applications of these compounds in nonlinear optics. In this study, density functional theory simulations are performed to study alkali and alkaline earth metal-doped benzocryptand using the B3LYP/6-31G+(d, p) level of theory. Vertical ionization energies (VIEs), reactivity parameters, interaction energies, and binding energies exposed the thermodynamic stability of these complexes. FMO analysis revealed that HOMO is located on alkali metals having polarized electrons, which are easy to excite. The doping strategy enhanced the charge transfer with low bandgap energy in the range of 0.68-2.23 eV, which is lower than that of the surface BC (5.50 eV). Also, the lower transition energies and higher oscillator strength indicate that these complexes exhibit excellent electronic and optical properties. Non-covalent interaction analysis suggested the presence of van der Waals interactions between dopants and surface. IR analysis provided information about the frequencies of stretching vibrations present in the complexes due to different bonds. UV-vis analysis revealed that all the newly designed excess electron complexes are transparent in the UV region and possessed maximum absorption in the visible and NIR region, ranging from 753.6 to 2150 nm, which is higher than the surface (244 nm). Thus, these complexes have a potential for high-performance NLO materials in the applications of optics. Natural bond orbital analysis (NBO), transition density matrix (TDM), electron density difference map (EDDM), and density of state (DOS) analyses were also performed to study the charge transfer properties. Moreover, these complexes possessed remarkable optoelectronic properties due to a significant increase in the isotropic linear polarizability (α iso) in the range of 629.59-1423.23 au. Further, these systems demonstrated an extraordinary large total first hyperpolarizability (ß tl) in the range of 3695.55-910 706.43 au. The rationalization of hyperpolarizability by the two-level model reflected a noteworthy increase in ß tl because of low transition energies (ΔE) and high transition dipole moment (Δµ). Thus, our results showed that alkali and alkaline earth metal-doped BC might be a competitor for efficient nonlinear optical properties with practical applications in the area of optoelectronics.

14.
Biomedicines ; 10(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35453559

ABSTRACT

Growing evidence suggests an altered gut microbiome in patients with heart failure (HF). However, the exact interrelationship between microbiota, HF, and its consequences on the metabolome are still unknown. We thus aimed here to decipher the association between the severity and progression of HF and the gut microbiome composition and circulating metabolites. Using a mouse model of transverse aortic constriction (TAC), gut bacterial diversity was found to be significantly lower in mice as early as day 7 post-TAC compared to Sham controls (p = 0.03), with a gradual progressive decrease in alpha-diversity on days 7, 14, and 42 (p = 0.014, p = 0.0016, p = 0.0021) compared to day 0, which coincided with compensated hypertrophy, maladaptive hypertrophy, and overtly failing hearts, respectively. Strikingly, segregated analysis based on the severity of the cardiac dysfunction (EF < 40% vs. EF 40−55%) manifested marked differences in the abundance and the grouping of several taxa. Multivariate analysis of plasma metabolites and bacterial diversity produced a strong correlation of metabolic alterations, such as reduced short-chain fatty acids and an increase in primary bile acids, with a differential abundance of distinct bacteria in HF. In conclusion, we showed that HF begets HF, likely via a vicious cycle of an altered microbiome and metabolic products.

15.
Microsc Res Tech ; 85(6): 2061-2075, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35098621

ABSTRACT

In classification and identification of plant species, palyno morphological character has remain helpful for plant taxonomist. The aim to investigation this study was to identify the characteristic features of Asteraceae and Poaceae family member collected from lower Himalayas of Pakistan. Light microscope and Scanning electron microscope were used for feature study of allergenic pollen. Our study includes 10 species of Asteraceae and Poaceae family. The most dominant shape of pollen was Oblate-spheroidal, Prolate-Spheroidal, Prolate and Suboblate shape of pollen. Quantitative character of pollen includes maximum pollen diameter found in Dichanthium annulatum (46.0 µm) and minimum polar axis pollen diameter found in Parthenium hysterophorous (16.0 µm). Similarly highest value of P/E ratio was noted in Cenchrus echinatus (1.05) and smallest value of P/E ratio was observed in Erigeron bonariensis (0.88). Poaceae family member were monoporate. Character feature of exine sculpturing include Microechinate, granulate, echinate, conical base, lacunae Nanogammate, Aerolate-Scabratre, Verrucate, like variation found in exine of both family member. Highest value of pollen fertility was observed in P. hysterophorous 93%, Similarly maximum value of pollen sterility was noted in E. bonariensis and Brachiaria reptans 24%. This investigation provides the characteristic feature of allergenic pollen species and help to arrange them in define class. RESEARCH HIGHLIGHTS: Pollen has affected many people around the world. Using microscopic techniques, morpho-palynological analysis of Asteraceae and Poaceae families were recognized. LM and SEM study show both qualitative and quantitative character of pollen. Identification of allergenic pollen and microscopic identified character play important role for proper guideline of identification of pollen having allergenic potential.


Subject(s)
Asteraceae , Phosmet , Allergens , Humans , Microscopy, Electron, Scanning , Pakistan , Poaceae , Pollen/ultrastructure
16.
Microsc Res Tech ; 85(4): 1320-1331, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34878709

ABSTRACT

Utilization of renewable and alternative energy feedstocks such as nonedible seeds oil to deal with the increasing energy crises and related ecological concerns have gained the attention of researchers. Biodiesel is an efficient and renewable substitute for diesel engine. This work investigates the potential of inexpensive nonedible seed oil of Linum usitatissimum to synthesize biodiesel using iron sulfate green nanocatalyst through the process of transesterification. Flax seed contains about 37.5% oil content estimated through Soxhlet apparatus. Light microscopy revealed that seed size varies from 3.0 to 6.0 cm in length, 2.0 to 3.3 cm in width, and 0.7 to 1.0 mm in diameter. Color of seed varied from yellow to brown. Characterization of biodiesel is performed through GC-MS and FTIR. Scanning electron microscopy was carried out to study the morphological features of seed coat. Catalyst was characterized by scanning electron microscopy, energy diffraction X-ray, and X-ray diffraction. The diffraction peaks of Fe3 O4 green nanoparticles were found to be in 2θ values, 30.24°, 35.62°, 38.26°, 49.56°, 57.12°, and 62.78°. Fuel properties of biodiesel are also determined and compared with ASTM standards. Linum usitatissimum biodiesel has density 0.8722 (15°C kg/L), kinetic viscosity 5.45 (40°C cSt), flash point (90°C), pour point (-13°C), cloud point (-9°C), sulfur (0.0432% wt), and total acid number (0.245 mg KOH/g). It is concluded that L. usitatissimum seed oil is a highly potential source for biodiesel production to cope with the challenge of present energy demand.


Subject(s)
Biofuels , Flax , Esterification , Microscopy, Electron, Scanning , Plant Oils
17.
Nat Prod Res ; 36(22): 5798-5802, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34933624

ABSTRACT

Present research delves in the isolation, extraction and identification of mycotoxins from ten corn samples collected from the northern province of Pakistan. Average concentration of aflatoxin B1 and B2 by HP-TLC found in all corn samples was 27.87 and 1.35 µg/kg, respectively. Following HP-TLC, detoxification of the identified and isolated mycotoxin was performed, which was analyzed by HPLC. Screening of mycoflora exhibited Aspergillus niger and Fusarium as the most dominant fungal strains. Aflatoxin B1 was physically detoxified under UV-Lamp and direct sunlight displaying detoxification percentage of 48% and 99%, respectively. Biological detoxification involved the use of botanicals such as neem leaves, garlic and ginger powder, which portrayed an approximate detoxification of 70% from corn samples. Current research concludes that the tested physical and biological methods can be easily adopted at field and storage rooms after the harvesting of crops to avoid fungal contamination and subsequent food spoilage.


Subject(s)
Fusarium , Mycotoxins , Mycotoxins/analysis , Zea mays , Aflatoxin B1 , Chromatography, High Pressure Liquid , Food Contamination/analysis
18.
Polymers (Basel) ; 13(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34961018

ABSTRACT

This research aims to assess the efficiency of the synthesized corncob as a cost-effective and eco-friendly adsorbent for the removal of heavy metals. Therefore, to carry out the intended research project, initially, the corncob was doped with nanoparticles to increase its efficiency or adsorption capacity. The prepared adsorbent was evaluated for the adsorption of cadmium (Cd) and chromium (Cr) from aqueous media with the batch experiment method. Factors that affect the adsorption process are pH, initial concentration, contact time and adsorbent dose. The analysis of Cd and Cr was performed by using atomic absorption spectrometry (AAS), while the characterization of the adsorbent was performed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that there is a significant difference before and after corncob activation and doping with CeO2 nanoparticles. The maximum removal for both Cd and Cr was at a basic pH with a contact time of 60 min at 120 rpm, which is 95% for Cd and 88% for Cr, respectively. To analyze the experimental data, a pseudo-first-order kinetic model, pseudo-second-order kinetic model, and intra-particle diffusion model were used. The kinetic adsorption studies confirmed that the experimental data were best fitted with the pseudo-second-order kinetic model (R2 = 0.989) and intra-particle diffusion model (R2 = 0.979). This work demonstrates that the cerium oxide/corncob nanocomposite is an inexpensive and environmentally friendly adsorbent for the removal of Cd and Cr from wastewater.

19.
Membranes (Basel) ; 11(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209425

ABSTRACT

The study involves the fabrication of an aluminum liquid membrane sensor based on the association of aluminum ions with the cited reagent 2,9-dimethyl-4,11-diphenyl -1,5,8,12-tetraaza cyclote tradeca-1,4,8,11-tetraene [DDTCT]. The characteristics slope (58 mV), rapid and linear response for aluminum ion was displayed by the proposed sensor within the concentration range 2.5 × 10-7-1.5 × 10-1 M, the detection limit (1.6 × 10-7) M, the selectivity behavior toward some metal cations, the response time 10 s), lifetime (150 days), the effect of pH on the suggested electrode potential and the requisite analytical validations were examined. The suitable pH range was (5.0-8.0 ), in this range the proposed electrode response is independent of pH. The suggested electrode was applied to detect the aluminum ions concentration in food products, real samples and standard alloys. The resulting data by the suggested electrode were statistically analyzed, and compared with the previously reported aluminum ion-selective electrodes in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...