Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 58(2): 576-602, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32997293

ABSTRACT

Understanding Parkinson's disease (PD), in particular in its earliest phases, is important for diagnosis and treatment. However, human brain samples are collected post-mortem, reflecting mainly end-stage disease. Because brain samples of mouse models can be collected at any stage of the disease process, they are useful in investigating PD progression. Here, we compare ventral midbrain transcriptomics profiles from α-synuclein transgenic mice with a progressive, early PD-like striatal neurodegeneration across different ages using pathway, gene set, and network analysis methods. Our study uncovers statistically significant altered genes across ages and between genotypes with known, suspected, or unknown function in PD pathogenesis and key pathways associated with disease progression. Among those are genotype-dependent alterations associated with synaptic plasticity and neurotransmission, as well as mitochondria-related genes and dysregulation of lipid metabolism. Age-dependent changes were among others observed in neuronal and synaptic activity, calcium homeostasis, and membrane receptor signaling pathways, many of which linked to G-protein coupled receptors. Most importantly, most changes occurred before neurodegeneration was detected in this model, which points to a sequence of gene expression events that may be relevant for disease initiation and progression. It is tempting to speculate that molecular changes similar to those changes observed in our model happen in midbrain dopaminergic neurons before they start to degenerate. In other words, we believe we have uncovered molecular changes that accompany the progression from preclinical to early PD.


Subject(s)
Parkinson Disease/pathology , alpha-Synuclein/metabolism , Aging/genetics , Aging/pathology , Animals , Corpus Striatum/pathology , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Ontology , Gene Regulatory Networks , Genotype , Humans , Mice, Transgenic , Nerve Degeneration/pathology , Parkinson Disease/genetics , Substantia Nigra/pathology , Transgenes , alpha-Synuclein/genetics
2.
Neurobiol Aging ; 58: 30-33, 2017 10.
Article in English | MEDLINE | ID: mdl-28697377

ABSTRACT

Regulator of G-protein signaling 4 (RGS4), a member of the RGS family of proteins that inactivate G-proteins, has gained interest as a potential drug target for neurological disorders, such as epilepsy and Parkinson's disease (PD). In the case of PD, the main current options for alleviating motor symptoms are dopamine replacement therapies, which have limitations because of side effects and reduced effectiveness over the long term. Research on new nondopaminergic PD drug targets has indicated that inhibition of RGS4 could be an effective adjuvant treatment option. The effectiveness of RGS4 inhibition for an array of PD-linked functional and structural neuroprotection end points has not yet been demonstrated. Here, we use the 6-hydroxydopamine (6-OHDA) lesioning model of the nigrostriatal pathway in mice to address this question. We observe, using a battery of behavioral and pathological measures, that mice deficient for RGS4 are not protected from 6-OHDA-induced injury and show enhanced susceptibility in some measures of motor function. Our results suggest that inhibition of RGS4 as a nondopaminergic target for PD should be approached with caution.


Subject(s)
Oxidopamine , Parkinson Disease/drug therapy , Parkinson Disease/genetics , RGS Proteins , Animals , Behavior , Disease Models, Animal , GTP-Binding Proteins/metabolism , Mice , Molecular Targeted Therapy , Neuroprotection , Parkinson Disease/pathology , Parkinson Disease/psychology , RGS Proteins/antagonists & inhibitors , Signal Transduction , Substantia Nigra/physiopathology
3.
Naunyn Schmiedebergs Arch Pharmacol ; 387(12): 1141-52, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25172523

ABSTRACT

Atherosclerosis is the commonest and most important vascular disease. Andrographolide (AND) is the main bioactive component of the medicinal plant Andrographis paniculata and is used in traditional medicine. This study was aimed to evaluate the antiatherogenic effect of AND against atherosclerosis induced by Porphyromonas gingivalis in White New Zealand rabbits. Thirty rabbits were divided into five groups as follows: G1, normal group; G2-5, were orally challenged with P. gingivalis five times a week over 12 weeks; G2, atherogenic control group; G3, standard group treated with atorvastatin (AV) 5 mg/kg; and G4 and G5, treatment groups treated with AND 10 and 20 mg/kg, respectively over 12 weeks. Serums were subjected to antioxidant enzymatic and anti-inflammatory activities, and the aorta was subjected to histological analyses. Groups treated with AND showed a significant reversal of liver and renal biochemical changes, compared with the atherogenic control group. In the same groups, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), total glutathione (GSH) levels in serum were significantly increased (P < 0.05), and lipid peroxidation (malondialdehyde (MDA)) levels were significantly decreased (P < 0.05), respectively. Furthermore, treated groups with AV and AND showed significant decrease in the level of VCAM-1 and ICAM-1 compared with the atherogenic control group. In aortic homogenate, the level of nitrotyrosine was significantly increased, while the level of MCP1 was significantly decreased in AV and AND groups compared with the atherogenic control group. In addition, staining the aorta with Sudan IV showed a reduction in intimal thickening plaque in AV and AND groups compared with the atherogenic control group. AND has showed an antiatherogenic property as well as the capability to reduce lipid, liver, and kidney biomarkers in atherogenic serum that prevents atherosclerosis complications caused by P. gingivalis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Atherosclerosis/prevention & control , Diterpenes/pharmacology , Porphyromonas gingivalis/pathogenicity , Animals , Anti-Inflammatory Agents/administration & dosage , Aorta/drug effects , Aorta/pathology , Atherosclerosis/microbiology , Atorvastatin , Disease Models, Animal , Diterpenes/administration & dosage , Dose-Response Relationship, Drug , Heptanoic Acids/pharmacology , Intercellular Adhesion Molecule-1/metabolism , Lipid Peroxidation/drug effects , Male , Plaque, Atherosclerotic/microbiology , Plaque, Atherosclerotic/prevention & control , Pyrroles/pharmacology , Rabbits , Vascular Cell Adhesion Molecule-1/metabolism
4.
PLoS One ; 7(9): e45024, 2012.
Article in English | MEDLINE | ID: mdl-23028743

ABSTRACT

Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the ß-strand ß3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF's trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Intramolecular Oxidoreductases/chemistry , Leucine/chemistry , Macrophage Migration-Inhibitory Factors/chemistry , Amino Acid Sequence , Conserved Sequence , Crystallography, X-Ray , Humans , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Molecular Sequence Data , Mutant Proteins/chemistry , Mutation/genetics , Protein Binding/genetics , Protein Multimerization , Protein Stability , Protein Structure, Quaternary , Protein Structure, Secondary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...