Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 24(11): 3370-85, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26054069

ABSTRACT

This paper proposes a fast algorithm for rotating images while preserving their quality. The new approach rotates images based on vertical or horizontal lines in the original image and their rotated equation in the target image. The proposed method is a one-pass method that determines a based-line equation in the target image and extracts all corresponding pixels on the base-line. Floating-point multiplications are performed to calculate the base-line in the target image, and other line coordinates are calculated using integer addition or subtraction and logical justifications from the base-line pixel coordinates in the target image. To avoid a heterogeneous distance between rotated pixels in the target image, each line rotates to two adjacent lines. The proposed method yields good performance in terms of speed and quality according to the results of an analysis of the computation speed and accuracy.

2.
Sensors (Basel) ; 14(3): 4126-43, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24590354

ABSTRACT

Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT) as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP) and false-negative (FN) points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS) methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR), is introduced. AR combines repeatability and the localization error (Le) for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images.

SELECTION OF CITATIONS
SEARCH DETAIL
...