Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Pharmacol Transl Sci ; 3(1): 135-147, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32190822

ABSTRACT

Store operated calcium (Ca2+) entry is an important homeostatic mechanism in cells, whereby the release of Ca2+ from intracellular endoplasmic reticulum stores triggers the activation of a Ca2+ influx pathway. Mediated by Orai1, this Ca2+ influx has specific and essential roles in biological processes as diverse as lactation to immunity. Although pharmacological inhibitors of this Ca2+ influx mechanism have helped to define the role of store operated Ca2+ entry in many cellular events, the lack of isoform specific modulators and activators of Orai1 has limited our full understanding of these processes. Here we report the identification and synthesis of an Orai1 activity enhancer that concurrently potentiated Orai1 Ca2+ -dependent inactivation (CDI). This unique enhancer of Orai1 had only a modest effect on Orai3 with weak inhibitory effects at high concentrations in intact MCF-7 breast cancer cells. The Orai1 enhancer heightened vascular smooth muscle cell migration induced by platelet-derived growth factor and the unique store operated Ca2+ entry pathway present in skeletal muscle cells. These studies show that IA65 is an exemplar for the translation and development of Orai isoform selective agents. The ability of IA65 to activate CDI demonstrates that agents can be developed that can enhance Orai1-mediated Ca2+ influx but avoid the cytotoxicity associated with sustained Orai1 activation. IA65 and/or future analogues with similar Orai1 and CDI activating properties could be fine tuners of physiological processes important in specific disease states, such as cellular migration and immune cell function.

2.
J Med Chem ; 48(20): 6174-7, 2005 Oct 06.
Article in English | MEDLINE | ID: mdl-16190744

ABSTRACT

Prostaglandin D2 (PGD2) acting at the CRTH2 receptor (chemoattractant receptor-homologous molecule expressed on Th2 cells) has been linked with a variety of allergic and other inflammatory diseases. We describe a family of indole-1-sulfonyl-3-acetic acids that are potent and selective CRTH2 antagonists that possess good oral bioavailability. The compounds may serve as novel starting points for the development of treatments of inflammatory disease such as asthma, allergic rhinitis, and atopic dermatitis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Indoleacetic Acids/chemical synthesis , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biological Availability , CHO Cells , Calcium/metabolism , Cricetinae , Cricetulus , Humans , Indoleacetic Acids/pharmacokinetics , Indoleacetic Acids/pharmacology , Prostaglandin D2/pharmacology , Rats , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/pharmacokinetics , Sulfones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...