Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 789: 147985, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34323823

ABSTRACT

Stream ecosystems are complex networks of interacting terrestrial and aquatic drivers. To untangle these ecological networks, efforts evaluating the direct and indirect effects of landscape, climate, and instream predictors on biological condition through time are needed. We used structural equation modeling and leveraged a stream survey program to identify and compare important predictors driving condition of benthic macroinvertebrate and fish assemblages. We used data resampled 14 years apart at 252 locations across Maryland, USA. Sample locations covered a wide range of conditions that varied spatiotemporally. Overall, the relationship directions were consistent between sample periods, but their relative strength varied temporally. For benthic macroinvertebrates, we found that the total effect of natural landscape (e.g., elevation, longitude, latitude, geology) and land use (i.e., forest, development, agriculture) predictors was 1.4 and 1.5 times greater in the late 2010s compared to the 2000s. Moreover, the total effect of water quality (e.g., total nitrogen and conductivity) and habitat (e.g., embeddedness, riffle quality) was 1.2 and 4.8 times lower in the 2010s, respectively. For fish assemblage condition, the total effect of land use-land cover predictors was 2.3 times greater in the 2010s compared to the 2000s, while the total effect of local habitat was 1.4 times lower in the 2010s, respectively. As expected, we found biological assemblages in catchments with more agriculture and urban development were generally comprised of tolerant, generalist species, while assemblages in catchments with greater forest cover had more-specialized, less-tolerant species (e.g., Ephemeroptera, Plecoptera, and Trichoptera taxa, clingers, benthic and lithophilic spawning fishes). Changes in the relative importance of landscape and land-use predictors suggest other correlated, yet unmeasured, proximal factors became more important over time. By untangling these ecological networks, stakeholders can gain a better understanding of the spatiotemporal relationships driving biological condition to implement management practices aimed at improving stream condition.

2.
Chem Commun (Camb) ; 53(88): 11992-11995, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-28984884

ABSTRACT

The 10DM24 deoxyribozyme can site-specifically label RNAs with fluorophore-GTP conjugates; however, the 2',5'-branched RNA linkage is readily cleaved by debranchase. To prevent loss of labels upon cleavage, we synthesized phosphorothioate-modified, fluorescent GTP derivatives and elaborated conditions for their incorporation by 10DM24. RNAs labeled with fluorescent derivatives of Sp-GTPS were found to be resistant to debranchase.


Subject(s)
DNA, Catalytic/chemistry , Fluorescent Dyes/chemistry , Guanosine Triphosphate/chemistry , RNA/analysis , RNA/chemistry , Staining and Labeling/methods , DNA, Catalytic/metabolism , Fluorescent Dyes/chemical synthesis , Guanosine Triphosphate/chemical synthesis , Sulfhydryl Compounds/chemistry
3.
Environ Monit Assess ; 186(2): 1167-82, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24114278

ABSTRACT

In an ongoing effort to propose biologically protective nutrient criteria, we examined how total nitrogen (TN) and its forms were associated with macroinvertebrate communities in wadeable streams of Maryland. Taxonomic and functional metrics of an index of biological integrity (IBI) were significantly associated with multiple nutrient measures; however, the highest correlations with nutrients were for ammonia-N and nitrite-N and among macroinvertebrate measures were for Beck's Biotic Index and its metrics. Since IBI metrics showed comparatively less association, we evaluated how macroinvertebrate taxa related to proposed nutrient criteria previously derived for those same streams instead of developing nutrient-biology thresholds. We identified one tolerant and three intolerant taxa whose occurrence appeared related to a TN benchmark. Individually, these taxa poorly indicated whether streams exceeded the benchmark, but combining taxa notably improved classification rates. We then extracted major physiochemical gradients using principal components analysis to develop models that assessed their influence on nutrient indicator taxa. The response of intolerant taxa was predominantly influenced by a nutrient-forest cover gradient. In contrast, habitat quality had a greater effect on tolerant taxa. When taxa were aggregated into a nutrient sensitive index, the response was primarily influenced by the nutrient-forest gradient. Multiple lines of evidence highlight the effects of excessive nutrients in streams on macroinvertebrate communities and taxa in Maryland, whose loss may not be reflected in metrics that form the basis of biological criteria. Refinement of indicator taxa and a nutrient-sensitive index is warranted before thresholds in aquatic life to water quality are quantified.


Subject(s)
Ecosystem , Environmental Monitoring , Invertebrates/classification , Nitrogen/analysis , Phosphorus/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Biodiversity , Maryland
SELECTION OF CITATIONS
SEARCH DETAIL
...