Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
Sci Rep ; 14(1): 21573, 2024 09 16.
Article in English | MEDLINE | ID: mdl-39284874

ABSTRACT

Herbal medicines are important for ensuring sustainable development goals (SDGs) in healthcare, particularly in developing countries with high rates of antimicrobial resistance (AMR) and little access to medical facilities. Thymus vulgaris is a widely used herbal medicinal plant known for its secondary metabolites and antimicrobial properties. The present study involved a comprehensive examination of the isolation, characterization, and antibacterial activity of Thymus vulgaris obtained from Ethiopia. The aerial part of the plant Thymus vulgaris was successively extracted with hexane, chloroform, and methanol based on differences in polarity. Phytochemical screening tests conducted against hexane, chloroform and MeOH crude extracts indicated the presence of some secondary metabolites. Based on the thin-layer chromatography tests, the chloroform extract was subjected to column chromatography, yielding Tv-2 compounds, namely 5-isopropyl-2-methylphenol. The structures of the compounds were elucidated via spectroscopic methods (UV-Vis, FT-IR and NMR). We investigated the antibacterial properties of hexane crude extract, chloroform crude extract, MeOH crude extract, and isolated fractions derived from T. vulgaris against various bacterial strains. This study contributes to a better understanding of the bioactive components present in Thymus vulgaris crude extracts and their potential role in tackling microbial infections.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Plant Extracts , Thymus Plant , Thymus Plant/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Ethiopia , Bacteria/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification
2.
Heliyon ; 10(16): e36365, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39253146

ABSTRACT

Pesticides have health consequences for humans, living organisms, and ecosystems. Research on biological management, with a primary focus on entomopathogens, has been accelerated by the rise in issues such as pesticide residue, soil degradation, and pest resistance. Entomopathogenic nematodes (EPNs) are among the most frequently used and commercialised biopesticides. However, they are restricted in their infectivity, persistence, storage, and cost of production. The nematodes, along with their endosymbiotic bacteria, combine to form a nemato-bacterial complex. This complex is responsible for causing mortality in insect pests due to the production of insecticidal compounds. The adaptation of EPNs is an eco-friendly method, economical, and safer for the environment as well as non-target organisms. Moreover, it's a better alternative to synthetic chemical pesticides, as it can be helpful in overcoming pest resistance and resurgence issues. Application of nematode juveniles is a cost-effective method, but the necessity of refrigeration and transportation may enhance their cost. This review emphasised the diversity of entomopathogenic nematodes and their endosymbiotic bacteria, the exploration of the biocontrol potential of insect pests by under-utilisation of nematodes, the development of nematode-based formulations, and the discussion of critical issues and required research in the future.

3.
Langmuir ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267215

ABSTRACT

Interfacial dynamics within nanofluidic systems are crucial for applications like water desalination and osmotic energy harvesting. Understanding these dynamics can inform the rational optimization of two-dimensional (2D) materials and devices for such applications. This study explores the wetting behavior of realistic 2D MoS2 surfaces incorporating vacancies and atomic steps, known as atomic defects. We employ a combined density functional theory (DFT) and molecular dynamics (MD) computational approach to elucidate the influence of atomic defects on the MoS2-water interface. DFT calculations are utilized to determine the charge distribution within MoS2. Subsequently, free energy calculations are obtained through MD simulations of the MoS2-water interface. Our findings underscore the importance of incorporating atomic defects into MoS2 surfaces for accurate water contact angle (WCA) predictions in nanofluidic simulations, particularly when using Abal et al. force field parameters. However, the force field developed by Liu et al. yielded more accurate results for pristine MoS2 surfaces. While these parameters provide reliable outcomes for pristine MoS2 surfaces, their application to surfaces with defects may lead to underestimation of WCA. This highlights the critical need for realistic surface representations in nanofluidic modeling to accurately capture the complex interactions between water and MoS2 materials.

4.
Heliyon ; 10(16): e35980, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39229543

ABSTRACT

Over recent years, the scientific community has acknowledged the crucial role of certain microbial strains inhabiting the intestinal ecosystem in promoting human health, and participating in various beneficial functions for the host. These microorganisms are now referred to as next-generation probiotics and are currently considered as biotherapeutic products and food or nutraceutical supplements. However, the majority of next-generation probiotic candidates pose nutritional demands and exhibit high sensitivity towards aerobic conditions, leading to numerous technological hurdles in large-scale production. This underscores the need for the development of suitable delivery systems capable of enhancing the viability and functionality of these probiotic strains. Currently, potential candidates for next generation probiotics (NGP) are being sought among gut bacteria linked to health, which include strains from the genera Bacteroids, Faecalibacterium, Akkermansia and Clostridium. In contrast to Lactobacillus spp. and Bifidobacterium spp., NGP, particularly Bacteroids spp. and Clostridium spp., appear to exhibit greater ambiguity regarding their potential to induce infectious diseases. The present review provides a comprehensive overview of NGPs in terms of their health beneficial effects, regulation framework and risk assessment targeting relevant criteria for commercialization in food and pharmaceutical markets.

5.
Nat Prod Res ; : 1-9, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39205489

ABSTRACT

The opioid receptors play a pivotal role in the treatment of several neuropsychiatric and neurological disorders. Oroxylum indicum (L.) Kurtz is a very important medicinal plant with several therapeutic applications. It is a main constituent of the Ayurvedic formulation 'Dashmool' used for multifaceted disorders by the Indians. However, the constituents of this plant in neurological conditions have not been well studied. Here, we performed activity-guided isolation of compounds for opioid receptor modulator activity. In the study, we found that the isolated compound baicalein (3) has shown the most potent and competitive antagonistic activity at 20 mg/kg dose in vivo experiments. The acute dose of 3 (20 mg/kg) and pan opioid receptor antagonist naloxone (20 mg/kg) block the morphine-induced antinociception and the paw withdrawal latency decreases up to 8.3 s and 9.6 s, respectively. The in silico studies also support our in vitro data that compound 3 binds with MOR and KOR.

6.
Epilepsy Res ; 205: 107428, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39116512

ABSTRACT

OBJECTIVES: People with epilepsy (PWE) continue to suffer from discrimination and often bear the negative attitudes surrounding this condition. The aim of the study was to assess the frequency of perceived stigma and factors associated with it among PWE in tertiary care centre. MATERIAL AND METHODS: A hospital-based, cross-sectional study was conducted using the Kilifi Stigma Scale of Epilepsy (KSSE) to assess the stigma associated with epilepsy and factors related to stigma. RESULTS: A total of 260 consecutive PWE were recruited, with a mean age of 28.12±9.96 years. The majority of subjects had primarily or secondarily generalized seizures (85 %), and most of PWE don't know the cause of epilepsy (79.2 %) and feel that epilepsy is a contagious disease. Those with contagious beliefs felt more stigma (27.7 %). Stigma was perceived by 28.5 % of subjects using KSSE. Stigma was more perceived in those who had primarily or secondarily generalized seizures (23.9 %) and longer durations of anti-seizure medication (ASM) (24.4 %). Injury during a seizure was reported in 30 % of subjects and were more stigmatized (p<.01). CONCLUSION: Perceived stigma in PWE was found to be correlated with contagious beliefs. There is a need for awareness and educational programs by healthcare professionals at different levels to support and encourage positive beliefs, dispel myths about epilepsy, and inform PWEs of the fact that it is not a contagious disease.


Subject(s)
Epilepsy , Social Stigma , Humans , Male , Female , Adult , Cross-Sectional Studies , Epilepsy/psychology , Young Adult , Middle Aged , Adolescent , Surveys and Questionnaires , Health Knowledge, Attitudes, Practice
7.
Heliyon ; 10(12): e33167, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948031

ABSTRACT

Microbes are a worthwhile organism of the earth that could be formulated as consortium which can be utilized as biofertilizers. Consortium-based bioinoculants or biofertilizers are superior to single strain-based inoculants for sustainable agricultural productivity and increased micronutrient content in yield. The aim of present study was to evaluate the effect of different combinations of beneficial bacteria that are more effective than single-based bioinoculants. The current work focuses on the isolation of rhizospheric microorganisms from various cereals and pseudocereal crops and the development of a single inoculum as well as a bacterial consortium which were evaluated on wheat crop. A total 214 rhizospheric bacteria were sorted out and, screened for mineral solubilizing attributes i.e., phosphorus, potassium, zinc and selenium solubilization. Among all the bacterial isolates, four potential strains exhibiting P, K, Zn and Se-solubilizing attributes were identified with the help of 16S rRNA gene sequencing as Rahnella aquatilis EU-A3Rb1, Erwinia aphidicola EU-A2RNL1, Brevibacillus brevis EU-C3SK2, and Bacillus mycoides EU-WRSe4, respectively. The identified strains formulated as a consortium which were found to improve the plant growth and physiological parameters in comparison to single culture inoculants and control. To the best of our knowledge, the present investigation is the first report that has developed the consortium from bacterial strains Rahnella aquatilis EU-A3Rb1, Erwinia aphidicola EU-A2RNL1, Brevibacillus brevis EU-C3SK2, and Bacillus mycoides EU-WRSe4. A combination of bacterial strains could be used as liquid inoculants for cereal crops growing in mountainous regions.

8.
Curr Microbiol ; 81(8): 251, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954017

ABSTRACT

A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.


Subject(s)
Nanoparticles , Nanotechnology , Nanotechnology/methods , Nanoparticles/chemistry , Bacteria/metabolism , Bacteria/genetics , Biotechnology/methods , Synthetic Biology/methods , Nanostructures/chemistry
9.
J Craniovertebr Junction Spine ; 15(2): 178-184, 2024.
Article in English | MEDLINE | ID: mdl-38957772

ABSTRACT

Objective: The authors report the results of "only-fixation" of the affected spinal segment without any decompression of the bones or soft tissue or manipulation of the cyst wall or contents in eight cases having lumbar parafacetal cyst (LPFC). This surgical strategy was based on the concept that LPFCs are secondary to spinal instability, has a protective or adaptive role, and is reversible following stabilization. Materials and Methods: During the period from January 2018 to January 2023, eight consecutive patients having LPFC were surgically treated. There were 5 males and 3 females, and their ages ranged from 48 to 72 years (average 63 years). Seven patients had a single cyst and one patient had multiple cysts. The patients presented with symptoms classically attributed to lumbar canal stenosis. Apart from the cyst-affected spinal segment, degenerative alterations were observed in adjoining spinal segments in six out of seven patients having a single cyst. All patients underwent "only fixation" of the unstable spinal segments without any kind of bone or soft-tissue resection and without any manipulation or handling of the cyst wall or contents. Results: During the follow-up period that ranged from 12 to 57 months (average 29 months), all patients improved from their symptoms. The recovery was observed in the immediate postoperative period and was lasting. Conclusions: LPFCs are one of the several secondary alterations observed in spinal degeneration. Identification of unstable spinal segments and their fixation constitutes rational treatment of lumbar parafacetal cysts. Direct handling and resection of cysts are unnecessary.

11.
Sci Total Environ ; 948: 174935, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39053530

ABSTRACT

Forest restoration is an effective method for restoring degraded soil ecosystems (e.g., converting primary tropical forests into rubber monoculture plantations; RM). The effects of forest restoration on microbial community diversity and composition have been extensively studied. However, how rubber plantation-based forest restoration reshapes soil microbial communities, networks, and inner assembly mechanisms remains unclear. Here, we explored the effects of jungle rubber mixed (JRM; secondary succession and natural restoration of RM) plantation and introduction of rainforest species (AR; anthropogenic restoration established by mimicking the understory and overstory tree species of native rainforests) to RM stands on soil physico-chemical properties and microbial communities. We found that converting tropical rainforest (RF) to RM decreased soil fertility and simplified microbial composition and co-occurrence patterns, whereas the conversion of RM to JRM and AR exhibited opposite results. These changes were significantly correlated with pH, soil moisture content (SMC), and soil nutrients, suggesting that vegetation restoration can provide a favorable soil microenvironment that promotes the development of soil microorganisms. The complexity and stability of the bacterial-fungal cross-kingdom, bacterial, and fungal networks increased with JRM and AR. Bacterial community assembly was primarily governed by stochastic (78.79 %) and deterministic (59.09 %) processes in JRM and AR, respectively, whereas stochastic processes (limited dispersion) predominantly shaped fungal assembly across all forest stands. AR has more significant benefits than JRM, such as a relatively slower and natural vegetation succession with more nutritive soil conditions, microbial diversity, and complex and stable microbial networks. These results highlight the importance of sustainable forest management to restore soil biodiversity and ecosystem functions after extensive soil degradation and suggest that anthropogenic restoration can more effectively improve soil quality and microbial communities than natural restoration in degraded rubber plantations.


Subject(s)
Microbiota , Soil Microbiology , Rubber , Soil/chemistry , Hevea , Rainforest , Environmental Restoration and Remediation/methods , Fungi , Bacteria , Forests
12.
Langmuir ; 40(31): 16058-16068, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39056521

ABSTRACT

Hexagonal boron nitride (hBN) exhibits immense potential in H2O-related technologies, but its interaction with H2O, especially on rough surfaces, remains unclear. This study unravels the influence of surface roughness and force field selection on hBN wettability using molecular dynamics (MD) simulations. We leverage quantum mechanical calculations to accurately capture the hBN surface charge distribution and combine it with free energy calculations via MD simulations for the hBN-H2O interfaces. Incorporating surface roughness into the model yields results in close agreement with the experimental contact angle of 66° for H2O using FF-3 force fields, validating the simulation approach. However, this approach can yield an unrealistic water contact angle (WCA) of 0° for FF-2 force fields, highlighting the crucial role of force field selection and realistic surface representations. We further dissect the impact of roughness on the WCA, identifying the individual contributions of electrostatic and Lennard-Jones interactions to the work of adhesion. This research investigates the combined impact of surface roughness and force fields on interfacial properties, providing new possibilities for the advancement and optimization of desalination.

13.
J Mater Chem B ; 12(30): 7348-7356, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38958687

ABSTRACT

In a number of recently published experimental studies from our research group, the positive impact of magnetic stimuli (static/pulsed) on cell functionality modulation or bactericidal effects, in vitro, has been established. In order to develop a theoretical understanding of such magnetobiological effects, the present study aimed to present two quantitative models to determine magnetic Maxwell stresses as well as pressure acting on the cell membrane, under the influence of a time varying magnetic field. The model predicts that magnetic field-induced stress on the cell/bacteria is dependent on the conductivity properties of the extracellular region, which is determined to be too low to cause any significant effect. However, the force on the cell/bacteria due to the induced electric field is more influential than that of the magnetic field, which has been used to determine the membrane tension that can cause membrane poration. With a known critical membrane tension for cells, the field parameters necessary to cause membrane rupture have been estimated. Based on the experimental results and theoretically predicted values, the field parameters can be classified into three regimes, wherein the magnetic fields cause no effect or result in biophysical stimulation or induce cell death due to membrane damage. Taken together, this work provides some quantitative insights into the impact of magnetic fields on biological systems.


Subject(s)
Cell Membrane , Magnetic Fields , Time Factors
14.
Heliyon ; 10(11): e31550, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828310

ABSTRACT

Agro-environmental sustainability is based upon the adoption of efficient resources in agro-practices that have a nominal impact on the ecosystem. Insect pests are responsible for causing severe impacts on crop productivity. Wide ranges of agro-chemicals have been employed over the last 50 years to overcome crop yield losses due to insect pests. But better knowledge about the hazards due to chemical pesticides and other pest resistance and resurgence issues necessitates an alternative for pest control. The applications of biological pesticides offer a best alternate that is safe, cost-effective, easy to adoption and successful against various insect pests and pathogens. Like other organisms, insects can get a wide range of diseases from various microbes, such as bacteria, fungi, viruses, protozoa, and nematodes. In order to create agricultural pest management practices that are environmentally beneficial, bacterial entomopathogens are being thoroughly studied. Utilization of bacterial biopesticides has been adopted for the protection of agricultural products. The different types of toxin complexes released by various microorganisms and their mechanisms of action are recapitulated. The present review described the diversity and biocontrol prospective of certain bacteria and summarised the potential of bacterial biopesticides for the management of agricultural pests, insects, and other phytopathogenic microorganisms in agricultural practices.

15.
Curr Microbiol ; 81(8): 222, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874817

ABSTRACT

In the present scenario, growing population demands more food, resulting in the need for sustainable agriculture. Numerous approaches are explored in response to dangers and obstacles to sustainable agriculture. A viable approach is to be exploiting microbial consortium, which generate diverse biostimulants with growth-promoting characteristics for plants. These bioinoculants play an indispensable role in optimizing nutrient uptake efficiency mitigating environmental stress. Plant productivity is mostly determined by the microbial associations that exist at the rhizospheric region of plants. The engineered consortium with multifunctional attributes can be effectively employed to improve crop growth efficacy. A number of approaches have been employed to identify the efficient consortia for plant growth and enhanced crop productivity. Various plant growth-promoting (PGP) microbes with host growth-supporting characteristics were investigated to see if they might work cohesively and provide a cumulative effect for improved growth and crop yield. The effective microbial consortia should be assessed using compatibility tests, pot experimentation techniques, generation time, a novel and quick plant bioassay, and sensitivity to external stimuli (temperature, pH). The mixture of two or more microbial strains found in the root microbiome stimulates plant growth and development. The present review deals with mechanism, formulation, inoculation process, commercialization, and applications of microbial consortia as plant bioinoculants for agricultural sustainability.


Subject(s)
Agriculture , Crops, Agricultural , Microbial Consortia , Plant Development , Agriculture/methods , Crops, Agricultural/microbiology , Soil Microbiology , Plant Roots/microbiology , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Rhizosphere , Plants/microbiology , Microbiota
16.
Anal Methods ; 16(27): 4431-4484, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38913433

ABSTRACT

Since the aggregation-based emission (AIE) phenomenon emerged in 2001, numerous chemical designs have been built around the AIE concept, displaying its utility for diverse applications, including optics, electronics, energy, and biosciences. The present review critically evaluates the broad applicability of AIEgen-based chemical models towards sensing small analytes and the structural design strategies adjusting the mode of action reported since the last decade. Various AIEgen models have been discussed, providing qualitative and quantitative estimation of cationic metal ions and anionic species, as well as biomolecular, cellular, and organelle-specific probes. A systematic overview of the reported structural design and the underlying working mode will pave the way for designing and developing the next generation of AIEgens for specific applications.

17.
Chemistry ; 30(46): e202401483, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38853431

ABSTRACT

Herein, we report a novel flavin analogue as singular chemical component for lysosome bioimaging, and inherited photosensitizer capability of the flavin core was demonstrated as a promising candidate for photodynamic therapy (PDT) application. Fine-tuning the flavin core with the incorporation of methoxy naphthyl appendage provides an appropriate chemical design, thereby offering photostability, selectivity, and lysosomal colocalization, along with the aggregation-induced emissive nature, making it suitable for lysosomal bioimaging applications. Additionally, photosensitization capability of the flavin core with photostable nature of the synthesized analogue has shown remarkable capacity for generating reactive oxygen species (ROS) within cells, making it a promising candidate for photodynamic therapy (PDT) application.


Subject(s)
Flavins , Lysosomes , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Lysosomes/metabolism , Lysosomes/chemistry , Reactive Oxygen Species/metabolism , Flavins/chemistry , HeLa Cells , Optical Imaging
18.
Plant Physiol Biochem ; 211: 108680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701606

ABSTRACT

Fruit crops are frequently subjected to biotic and abiotic stresses that can significantly reduce the absorption and translocation of essential elements, ultimately leading to a decrease in crop yield. It is imperative to grow fruits and vegetables in areas prone to drought, salinity, and extreme high, and low temperatures to meet the world's minimum nutrient demand. The use of integrated approaches, including supplementation of beneficial elements like silicon (Si), can enhance plant resilience under various stresses. Silicon is the second most abundant element on the earth crust, following oxygen, which plays a significant role in development and promote plant growth. Extensive efforts have been made to explore the advantages of Si supplementation in fruit crops. The application of Si to plants reinforces the cell wall, providing additional support through enhancing a mechanical and biochemical processes, thereby improving the stress tolerance capacity of crops. In this review, the molecular and physiological mechanisms that explain the beneficial effects of Si supplementation in horticultural crop species have been discussed. The review describes the role of Si and its transporters in mitigation of abiotic stress conditions in horticultural plants.


Subject(s)
Crops, Agricultural , Silicon , Stress, Physiological , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Fruit/metabolism , Fruit/growth & development
19.
Article in English | MEDLINE | ID: mdl-38753476

ABSTRACT

The key challenges in cloud computing encompass dynamic resource scaling, load balancing, and power consumption. Accurate workload prediction is identified as a crucial strategy to address these challenges. Despite numerous methods proposed to tackle this issue, existing approaches fall short of capturing the high-variance nature of volatile and dynamic cloud workloads. Consequently, this paper introduces a novel model aimed at addressing this limitation. This paper presents a novel Multiple Controlled Toffoli-driven Adaptive Quantum Neural Network (MCT-AQNN) model to establish an empirical solution to complex, elastic as well as challenging workload prediction problems by optimizing the exploration, adaption, and exploitation proficiencies through quantum learning. The computational adaptability of quantum computing is ingrained with machine learning algorithms to derive more precise correlations from dynamic and complex workloads. The furnished input data point and hatched neural weights are refitted in the form of qubits while the controlling effects of Multiple Controlled Toffoli (MCT) gates are operated at the hidden and output layers of Quantum Neural Network (QNN) for enhancing learning capabilities. Complimentarily, a Uniformly Adaptive Quantum Machine Learning (UAQL) algorithm has evolved to functionally and effectually train the QNN. The extensive experiments are conducted and the comparisons are performed with state-of-the-art methods using four real-world benchmark datasets. Experimental results evince that MCT-AQNN has up to 32%-96% higher accuracy than the existing approaches.

20.
Article in English | MEDLINE | ID: mdl-38668814

ABSTRACT

In the past few decades, the pressure of higher food production to satisfy the demand of ever rising population has inevitably increased the use synthetic agrochemicals which have deterioration effects. Biostimulants containing beneficial microbes (single inoculants and microbial consortium) were found as an ideal substitute of synthetic chemical fertilizers. In recent years, microbial consortium is known as a better bioinoculant in comparison to single inoculant bioformulation because of multifarious plant growth-promoting advantages. Looking at the advantageous effect of consortium, in present investigation, different bacteria were isolated from rhizospheric soil and plant samples collected from the Himalayan mountains on the green slopes of the Shivaliks, Himachal Pradesh. The isolated bacteria were screened for nitrogen (N) fixation, phosphorus (P) solubilization and potassium (K) solubilization plant growth promoting attributes, and efficient strains were identified through 16S rRNA gene sequencing and BLASTn analysis. The bacteria showing a positive effect in NPK uptake were developed as bacterial consortium for the growth promotion of eggplant crop. A total of 188 rhizospheric and endophytic bacteria were sorted out, among which 13 were exhibiting nitrogenase activity, whereas 43 and 31 were exhibiting P and K solubilization traits, respectively. The selected three efficient and potential bacterial strains were identified using 16S rRNA gene sequencing as Enterobacter ludwigii EU-BEN-22 (N-fixer; 35.68 ± 00.9 nmol C2H4 per mg protein per h), Micrococcus indicus EU-BRP-6 (P-solubilizer; 201 ± 0.004 mg/L), and Pseudomonas gessardii EU-BRK-55 (K-solubilizer; 51.3 ± 1.7 mg/mL), and they were used to develop a bacterial consortium. The bacterial consortium evaluation on eggplant resulted in the improvement of growth (root/shoot length and biomass) and physiological parameters (chlorophyll, carotenoids, total soluble sugar, and phenolic content) of the plants with respect to single culture inoculation, chemical fertilizer, and untreated control. A bacterial consortium having potential to promote plant growth could be used as bioinoculant for horticulture crops growing in hilly regions.

SELECTION OF CITATIONS
SEARCH DETAIL