Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
J Craniovertebr Junction Spine ; 15(2): 178-184, 2024.
Article in English | MEDLINE | ID: mdl-38957772

ABSTRACT

Objective: The authors report the results of "only-fixation" of the affected spinal segment without any decompression of the bones or soft tissue or manipulation of the cyst wall or contents in eight cases having lumbar parafacetal cyst (LPFC). This surgical strategy was based on the concept that LPFCs are secondary to spinal instability, has a protective or adaptive role, and is reversible following stabilization. Materials and Methods: During the period from January 2018 to January 2023, eight consecutive patients having LPFC were surgically treated. There were 5 males and 3 females, and their ages ranged from 48 to 72 years (average 63 years). Seven patients had a single cyst and one patient had multiple cysts. The patients presented with symptoms classically attributed to lumbar canal stenosis. Apart from the cyst-affected spinal segment, degenerative alterations were observed in adjoining spinal segments in six out of seven patients having a single cyst. All patients underwent "only fixation" of the unstable spinal segments without any kind of bone or soft-tissue resection and without any manipulation or handling of the cyst wall or contents. Results: During the follow-up period that ranged from 12 to 57 months (average 29 months), all patients improved from their symptoms. The recovery was observed in the immediate postoperative period and was lasting. Conclusions: LPFCs are one of the several secondary alterations observed in spinal degeneration. Identification of unstable spinal segments and their fixation constitutes rational treatment of lumbar parafacetal cysts. Direct handling and resection of cysts are unnecessary.

2.
Heliyon ; 10(12): e33167, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948031

ABSTRACT

Microbes are a worthwhile organism of the earth that could be formulated as consortium which can be utilized as biofertilizers. Consortium-based bioinoculants or biofertilizers are superior to single strain-based inoculants for sustainable agricultural productivity and increased micronutrient content in yield. The aim of present study was to evaluate the effect of different combinations of beneficial bacteria that are more effective than single-based bioinoculants. The current work focuses on the isolation of rhizospheric microorganisms from various cereals and pseudocereal crops and the development of a single inoculum as well as a bacterial consortium which were evaluated on wheat crop. A total 214 rhizospheric bacteria were sorted out and, screened for mineral solubilizing attributes i.e., phosphorus, potassium, zinc and selenium solubilization. Among all the bacterial isolates, four potential strains exhibiting P, K, Zn and Se-solubilizing attributes were identified with the help of 16S rRNA gene sequencing as Rahnella aquatilis EU-A3Rb1, Erwinia aphidicola EU-A2RNL1, Brevibacillus brevis EU-C3SK2, and Bacillus mycoides EU-WRSe4, respectively. The identified strains formulated as a consortium which were found to improve the plant growth and physiological parameters in comparison to single culture inoculants and control. To the best of our knowledge, the present investigation is the first report that has developed the consortium from bacterial strains Rahnella aquatilis EU-A3Rb1, Erwinia aphidicola EU-A2RNL1, Brevibacillus brevis EU-C3SK2, and Bacillus mycoides EU-WRSe4. A combination of bacterial strains could be used as liquid inoculants for cereal crops growing in mountainous regions.

4.
Curr Microbiol ; 81(8): 251, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954017

ABSTRACT

A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.


Subject(s)
Nanoparticles , Nanotechnology , Nanotechnology/methods , Nanoparticles/chemistry , Bacteria/metabolism , Bacteria/genetics , Biotechnology/methods , Synthetic Biology/methods , Nanostructures/chemistry
5.
J Mater Chem B ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958687

ABSTRACT

In a number of recently published experimental studies from our research group, the positive impact of magnetic stimuli (static/pulsed) on cell functionality modulation or bactericidal effects, in vitro, has been established. In order to develop a theoretical understanding of such magnetobiological effects, the present study aimed to present two quantitative models to determine magnetic Maxwell stresses as well as pressure acting on the cell membrane, under the influence of a time varying magnetic field. The model predicts that magnetic field-induced stress on the cell/bacteria is dependent on the conductivity properties of the extracellular region, which is determined to be too low to cause any significant effect. However, the force on the cell/bacteria due to the induced electric field is more influential than that of the magnetic field, which has been used to determine the membrane tension that can cause membrane poration. With a known critical membrane tension for cells, the field parameters necessary to cause membrane rupture have been estimated. Based on the experimental results and theoretically predicted values, the field parameters can be classified into three regimes, wherein the magnetic fields cause no effect or result in biophysical stimulation or induce cell death due to membrane damage. Taken together, this work provides some quantitative insights into the impact of magnetic fields on biological systems.

6.
Anal Methods ; 16(27): 4431-4484, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38913433

ABSTRACT

Since the aggregation-based emission (AIE) phenomenon emerged in 2001, numerous chemical designs have been built around the AIE concept, displaying its utility for diverse applications, including optics, electronics, energy, and biosciences. The present review critically evaluates the broad applicability of AIEgen-based chemical models towards sensing small analytes and the structural design strategies adjusting the mode of action reported since the last decade. Various AIEgen models have been discussed, providing qualitative and quantitative estimation of cationic metal ions and anionic species, as well as biomolecular, cellular, and organelle-specific probes. A systematic overview of the reported structural design and the underlying working mode will pave the way for designing and developing the next generation of AIEgens for specific applications.

7.
Chemistry ; : e202401483, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853431

ABSTRACT

Herein, we report a novel flavin analogue as singular chemical component for lysosome bioimaging and inherited photosensitizer capability of the flavin core was demonstrated as a promising candidate for photodynamic therapy (PDT) application. Fine-tuning the flavin core with the incorporation of methoxy naphthyl appendage provides an appropriate chemical design, thereby offering greater photostability, selectivity, and lysosomal colocalization, along with the aggregation-induced emissive nature, making it suitable for lysosomal bioimaging, applications. Additionally, photosensitization capability of the flavin core with photostable nature of the synthesized analogue has shown remarkable capacity for generating reactive oxygen species (ROS) within cells making it a promising candidate for photodynamic therapy (PDT) application.

8.
Curr Microbiol ; 81(8): 222, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874817

ABSTRACT

In the present scenario, growing population demands more food, resulting in the need for sustainable agriculture. Numerous approaches are explored in response to dangers and obstacles to sustainable agriculture. A viable approach is to be exploiting microbial consortium, which generate diverse biostimulants with growth-promoting characteristics for plants. These bioinoculants play an indispensable role in optimizing nutrient uptake efficiency mitigating environmental stress. Plant productivity is mostly determined by the microbial associations that exist at the rhizospheric region of plants. The engineered consortium with multifunctional attributes can be effectively employed to improve crop growth efficacy. A number of approaches have been employed to identify the efficient consortia for plant growth and enhanced crop productivity. Various plant growth-promoting (PGP) microbes with host growth-supporting characteristics were investigated to see if they might work cohesively and provide a cumulative effect for improved growth and crop yield. The effective microbial consortia should be assessed using compatibility tests, pot experimentation techniques, generation time, a novel and quick plant bioassay, and sensitivity to external stimuli (temperature, pH). The mixture of two or more microbial strains found in the root microbiome stimulates plant growth and development. The present review deals with mechanism, formulation, inoculation process, commercialization, and applications of microbial consortia as plant bioinoculants for agricultural sustainability.


Subject(s)
Agriculture , Crops, Agricultural , Microbial Consortia , Plant Development , Agriculture/methods , Crops, Agricultural/microbiology , Soil Microbiology , Plant Roots/microbiology , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Rhizosphere , Plants/microbiology , Microbiota
9.
Heliyon ; 10(11): e31550, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828310

ABSTRACT

Agro-environmental sustainability is based upon the adoption of efficient resources in agro-practices that have a nominal impact on the ecosystem. Insect pests are responsible for causing severe impacts on crop productivity. Wide ranges of agro-chemicals have been employed over the last 50 years to overcome crop yield losses due to insect pests. But better knowledge about the hazards due to chemical pesticides and other pest resistance and resurgence issues necessitates an alternative for pest control. The applications of biological pesticides offer a best alternate that is safe, cost-effective, easy to adoption and successful against various insect pests and pathogens. Like other organisms, insects can get a wide range of diseases from various microbes, such as bacteria, fungi, viruses, protozoa, and nematodes. In order to create agricultural pest management practices that are environmentally beneficial, bacterial entomopathogens are being thoroughly studied. Utilization of bacterial biopesticides has been adopted for the protection of agricultural products. The different types of toxin complexes released by various microorganisms and their mechanisms of action are recapitulated. The present review described the diversity and biocontrol prospective of certain bacteria and summarised the potential of bacterial biopesticides for the management of agricultural pests, insects, and other phytopathogenic microorganisms in agricultural practices.

10.
Plant Physiol Biochem ; 211: 108680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701606

ABSTRACT

Fruit crops are frequently subjected to biotic and abiotic stresses that can significantly reduce the absorption and translocation of essential elements, ultimately leading to a decrease in crop yield. It is imperative to grow fruits and vegetables in areas prone to drought, salinity, and extreme high, and low temperatures to meet the world's minimum nutrient demand. The use of integrated approaches, including supplementation of beneficial elements like silicon (Si), can enhance plant resilience under various stresses. Silicon is the second most abundant element on the earth crust, following oxygen, which plays a significant role in development and promote plant growth. Extensive efforts have been made to explore the advantages of Si supplementation in fruit crops. The application of Si to plants reinforces the cell wall, providing additional support through enhancing a mechanical and biochemical processes, thereby improving the stress tolerance capacity of crops. In this review, the molecular and physiological mechanisms that explain the beneficial effects of Si supplementation in horticultural crop species have been discussed. The review describes the role of Si and its transporters in mitigation of abiotic stress conditions in horticultural plants.


Subject(s)
Crops, Agricultural , Silicon , Stress, Physiological , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Fruit/metabolism , Fruit/growth & development
11.
Article in English | MEDLINE | ID: mdl-38753476

ABSTRACT

The key challenges in cloud computing encompass dynamic resource scaling, load balancing, and power consumption. Accurate workload prediction is identified as a crucial strategy to address these challenges. Despite numerous methods proposed to tackle this issue, existing approaches fall short of capturing the high-variance nature of volatile and dynamic cloud workloads. Consequently, this paper introduces a novel model aimed at addressing this limitation. This paper presents a novel Multiple Controlled Toffoli-driven Adaptive Quantum Neural Network (MCT-AQNN) model to establish an empirical solution to complex, elastic as well as challenging workload prediction problems by optimizing the exploration, adaption, and exploitation proficiencies through quantum learning. The computational adaptability of quantum computing is ingrained with machine learning algorithms to derive more precise correlations from dynamic and complex workloads. The furnished input data point and hatched neural weights are refitted in the form of qubits while the controlling effects of Multiple Controlled Toffoli (MCT) gates are operated at the hidden and output layers of Quantum Neural Network (QNN) for enhancing learning capabilities. Complimentarily, a Uniformly Adaptive Quantum Machine Learning (UAQL) algorithm has evolved to functionally and effectually train the QNN. The extensive experiments are conducted and the comparisons are performed with state-of-the-art methods using four real-world benchmark datasets. Experimental results evince that MCT-AQNN has up to 32%-96% higher accuracy than the existing approaches.

12.
J Craniovertebr Junction Spine ; 15(1): 74-82, 2024.
Article in English | MEDLINE | ID: mdl-38644907

ABSTRACT

Aim: The authors analyze their published work and update their experience with 374 cases of cervical radiculopathy and/or myelopathy related to spinal degeneration that includes ossification of the posterior longitudinal ligament (OPLL). The role of atlantoaxial and subaxial spinal instability as the nodal point of pathogenesis and focused target of surgical treatment is analyzed. Materials and Methods: During the period from June 2012 to November 2022, 374 patients presented with acute or chronic symptoms related to radiculopathy and/or myelopathy that were attributed to degenerative cervical spondylotic changes or due to OPLL. There were 339 males and 35 females, and their ages ranged from 39 to 77 years (average 62 years). All patients were treated for subaxial spinal stabilization by Camille's transarticular technique with the aim of arthrodesis of the treated segments. Atlantoaxial stabilization was done in 128 cases by adopting direct atlantoaxial fixation in 55 cases or a modified technique of indirect atlantoaxial fixation in 73 patients. Decompression by laminectomy, laminoplasty, corpectomy, discoidectomy, osteophyte resection, or manipulation of OPLL was not done in any case. Standard monitoring parameters, video recordings, and patient self-assessment scores formed the basis of clinical evaluation. Results: During the follow-up period that ranged from 3 to 125 months (average: 59 months), all patients had clinical improvement. Of 130 patients who had clinical evidences of severe myelopathy and were either wheelchair or bed bound, 116 patients walked aided (23 patients), or unaided (93 patients) at the last follow-up. One patient in the series was operated on 24 months after the first surgery by anterior cervical route for "adjacent segment" disc herniation. No other patient in the entire series needed any kind of repeat or additional surgery for persistent, recurrent, increased, or additional related symptoms. None of the screws at any level backed out or broke. There were no implant-related infections. Spontaneous regression of the size of osteophytes was observed in 259 patients where a postoperative imaging was possible after at least 12 months of surgery. Conclusions: Our successful experience with only spinal fixation without any kind of "decompression" identifies the defining role of "instability" in the pathogenesis of spinal degeneration and its related symptoms. OPLL appears to be a secondary manifestation of chronic or longstanding spinal instability.

13.
Article in English | MEDLINE | ID: mdl-38668814

ABSTRACT

In the past few decades, the pressure of higher food production to satisfy the demand of ever rising population has inevitably increased the use synthetic agrochemicals which have deterioration effects. Biostimulants containing beneficial microbes (single inoculants and microbial consortium) were found as an ideal substitute of synthetic chemical fertilizers. In recent years, microbial consortium is known as a better bioinoculant in comparison to single inoculant bioformulation because of multifarious plant growth-promoting advantages. Looking at the advantageous effect of consortium, in present investigation, different bacteria were isolated from rhizospheric soil and plant samples collected from the Himalayan mountains on the green slopes of the Shivaliks, Himachal Pradesh. The isolated bacteria were screened for nitrogen (N) fixation, phosphorus (P) solubilization and potassium (K) solubilization plant growth promoting attributes, and efficient strains were identified through 16S rRNA gene sequencing and BLASTn analysis. The bacteria showing a positive effect in NPK uptake were developed as bacterial consortium for the growth promotion of eggplant crop. A total of 188 rhizospheric and endophytic bacteria were sorted out, among which 13 were exhibiting nitrogenase activity, whereas 43 and 31 were exhibiting P and K solubilization traits, respectively. The selected three efficient and potential bacterial strains were identified using 16S rRNA gene sequencing as Enterobacter ludwigii EU-BEN-22 (N-fixer; 35.68 ± 00.9 nmol C2H4 per mg protein per h), Micrococcus indicus EU-BRP-6 (P-solubilizer; 201 ± 0.004 mg/L), and Pseudomonas gessardii EU-BRK-55 (K-solubilizer; 51.3 ± 1.7 mg/mL), and they were used to develop a bacterial consortium. The bacterial consortium evaluation on eggplant resulted in the improvement of growth (root/shoot length and biomass) and physiological parameters (chlorophyll, carotenoids, total soluble sugar, and phenolic content) of the plants with respect to single culture inoculation, chemical fertilizer, and untreated control. A bacterial consortium having potential to promote plant growth could be used as bioinoculant for horticulture crops growing in hilly regions.

14.
Langmuir ; 40(15): 7812-7834, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38587122

ABSTRACT

Interfacial properties, such as wettability and friction, play critical roles in nanofluidics and desalination. Understanding the interfacial properties of two-dimensional (2D) materials is crucial in these applications due to the close interaction between liquids and the solid surface. The most important interfacial properties of a solid surface include the water contact angle, which quantifies the extent of interactions between the surface and water, and the water slip length, which determines how much faster water can flow on the surface beyond the predictions of continuum fluid mechanics. This Review seeks to elucidate the mechanism that governs the interfacial properties of diverse 2D materials, including transition metal dichalcogenides (e.g., MoS2), graphene, and hexagonal boron nitride (hBN). Our work consolidates existing experimental and computational insights into 2D material synthesis and modeling and explores their interfacial properties for desalination. We investigated the capabilities of density functional theory and molecular dynamics simulations in analyzing the interfacial properties of 2D materials. Specifically, we highlight how MD simulations have revolutionized our understanding of these properties, paving the way for their effective application in desalination. This Review of the synthesis and interfacial properties of 2D materials unlocks opportunities for further advancement and optimization in desalination.

15.
J Neurosci Rural Pract ; 15(1): 42-46, 2024.
Article in English | MEDLINE | ID: mdl-38476433

ABSTRACT

Objectives: Resistive index (RI) and pulsatility index (PI) assessed on carotid Doppler assess the hemodynamic status of cranial vasculature. They are related to the severity of stroke and help determine the overall outcome. This study was done to compare the hospital stay and stroke severity with RI and PI of both internal carotid arteries. Materials and Methods: Patients >18 years of age presenting within 48 h of anterior circulation stroke (either ischemic or hemorrhagic) were included. They were divided into two groups based on their length of stay (LOS). They were assessed clinically on days 1, 3, and 5, and underwent a carotid Doppler study on the same days. The Doppler parameters were correlated with the LOS and stroke severity for possible associations. Results: One hundred and one patients were included. Forty-seven patients had a favorable outcome based on LOS. In this group, significant decrease in RI and PI scores was seen from days 1 to 3. In patients with unfavorable outcome, there was a significant increase in PI on days 1-3 and days 1-5. The National Institutes of Health Stroke Scale decreased significantly from days 1 to 5 in favorable group. Conclusion: For those with an unfavorable outcome and prolonged LOS, PI continues to increase suggesting a failure of autoregulation. Carotid Doppler can be a simple bedside tool to predict outcome in patients with acute stroke.

16.
Bioresour Technol ; 397: 130496, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408499

ABSTRACT

Conventional machine learning approaches have shown limited predictive power when applied to continuous biohydrogen production due to nonlinearity and instability. This study was aimed at forecasting the dynamic membrane reactor performance in terms of the hydrogen production rate (HPR) and hydrogen yield (HY) using laboratory-based daily operation datapoints for twelve input variables. Hybrid algorithms were developed by integrating particle swarm optimized with functional link artificial neural network (PSO-FLN) which outperformed other hybrid algorithms for both HPR and HY, with determination coefficients (R2) of 0.97 and 0.80 and mean absolute percentage errors of 0.014 % and 0.023 %, respectively. Shapley additive explanations (SHAP) explained the two positive-influencing parameters, OLR_added (1.1-1.3 mol/L/d) and butyric acid (7.5-16.5 g COD/L) supports the highest HPR (40-60 L/L/d). This research indicates that PSO-FLN model are capable of handling complicated datasets with high precision in less computational timeat 9.8 sec for HPR and 10.0 sec for HY prediction.


Subject(s)
Bioreactors , Hydrogen , Fermentation , Neural Networks, Computer , Algorithms
17.
Folia Microbiol (Praha) ; 69(3): 491-520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38421484

ABSTRACT

The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.


Subject(s)
Agriculture , Nanoparticles , Nanotechnology , Nanotechnology/trends , Agriculture/methods , Nanoparticles/chemistry , Biotechnology/trends , Bacteria/metabolism
18.
Ann Vasc Surg ; 103: 99-108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38395340

ABSTRACT

BACKGROUND: Takayasu Arteritis (TA) is an immune mediated arteritis causing inflammation of the aorta and its branches, which can result in aortic aneurysms. Our aim is to describe the outcome of surgical management in these patients who presented with Thoracoabdominal aortic aneurysm (TAAA). METHODS: Between 2003 and 2023, 40 TA patients with TAAA underwent operative repair. RESULTS: There were 24 females and 16 males, in the age group of 19-53 years, with hypertension in 20 patients. Raised Erythrocyte sedimentation Rate was present in 13 patients. According to Crawford classification, there were 2 patients with type I, 2 with type II, 17 with type III, 12 patients with type IV and 7 with type V aneurysm. Multiple steno-occlusive lesions of aortic branches were present in 21 patients, with majority affecting the renal artery. Femoral Artery Femoral Vein Partial cardiopulmonary bypass was used for types I, II, III and V. Separate bypass to visceral branches was done in eight patients, of whom five had multiple bypasses and three patients only had renal bypass. Twelve patients underwent reimplantation of branches, out of which nine had multiple vessel reimplantation. Four patients underwent staged repair of the aneurysm, which included visceral debranching in the first day, followed by repair of the aneurysm in the next day. In the immediate postoperative period, ten patients developed acute kidney injury and two required dialysis. Other morbidities included acute respiratory distress syndrome (ARDS), spinal cord dysfunction, bleeding, and wound complications. Three patients expired in the immediate postoperative period. Mean duration of intensive care unit stay was 4.1 days and hospital stay was 12.7 days. Comparison of disease activity with morbidity and mortality was statistically insignificant. Patients were on follow-up for a range of 6 months to 14 years and median follow-up of 25 months. Over this time period four patients expired and four developed anastomotic pseudoaneurysm requiring intervention. On comparing the disease activity at the time of surgery with the long-term arteritis related complications that required intervention, the P value was 0.653 and hence statistically not significant. The 10-year survival rate is 84.4%. CONCLUSIONS: Surgical repair has good and satisfactory outcome, with low early and late mortality rates. Progression of disease can occur at any stage of the disease, hence indicating the need for long term follow-up and frequent imaging.


Subject(s)
Aortic Aneurysm, Thoracic , Blood Vessel Prosthesis Implantation , Postoperative Complications , Takayasu Arteritis , Humans , Takayasu Arteritis/complications , Takayasu Arteritis/surgery , Takayasu Arteritis/diagnostic imaging , Female , Male , Retrospective Studies , Treatment Outcome , Adult , Middle Aged , Aortic Aneurysm, Thoracic/surgery , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/mortality , Aortic Aneurysm, Thoracic/etiology , Blood Vessel Prosthesis Implantation/adverse effects , Blood Vessel Prosthesis Implantation/mortality , Time Factors , Young Adult , Postoperative Complications/etiology , Risk Factors , Length of Stay , Computed Tomography Angiography , Cardiopulmonary Bypass , Aortic Aneurysm, Thoracoabdominal
19.
J Pharm Biomed Anal ; 240: 115945, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38181556

ABSTRACT

Sida is one of the most diverse genera, with about 200 species distributed in tropical and subtropical regions of the world. Among 18 species distributed in India, Sida acuta, Sida cordifolia, Sida rhombifolia, and Sida cordata are used in traditional medicines along with its possible adulterant Abutilon indicum for several therapeutic uses. The non-availability of marker-based validated methods for the identification and classification of these species leads to adulteration. Indoloquinoline and quinazoline are the major bioactive alkaloids distributed in Sida spp. First time, a simple, economical and high throughput method was developed and validated for the simultaneous determination of 20-hydroxyecdysone (1), vasicine (2), vasicinone (3), cryptolepine (4), quindolinone (5), and cryptolepinone (6) using HPTLC-UV densitometry. The method was validated to meet globally accepted ICH guidelines. The method was sensitive with LOD and LOQ ranging from 0.38-0.63 and 1.57-2.12 µg/band. The samples were spiked at 3 different concentrations, the recovery values were 93.49-98.88%. In addition, the greenness index of the HPTLC method was estimated using four different greenness assessment techniques. Targeted HPTLC analysis indicated the distribution of specialized metabolites in Sida spp. and A. indicum. However, the occurrence of cryptolepine in A. indicum was not reported in the literature, so this was further confirmed by liquid chromatographic studies of the samples from different locations. The chromatographic data was statistically evaluated by principal component analysis (PCA) and hierarchical clustering (HCA). HPTLC-based targeted metabolite quantitation explains the adulteration/substitution in Sida raw material and derived herbal preparations.


Subject(s)
Chemometrics , Malvaceae , Plant Extracts/chemistry , Malvaceae/chemistry , Metabolomics , Medicine, Traditional , Chromatography, Thin Layer/methods
20.
J Biomed Mater Res B Appl Biomater ; 112(1): e35352, 2024 01.
Article in English | MEDLINE | ID: mdl-37982372

ABSTRACT

The development of patient-specific bone scaffolds that can expedite bone regeneration has been gaining increased attention, especially for critical-sized bone defects or fractures. Precise adaptation of the scaffold to the region of implantation and reduced surgery times are also crucial at clinical scales. To this end, bioactive fluorcanasite glass-ceramic microparticulates were incorporated within a biocompatible photocurable resin matrix following which the biocomposite resin precursor was 3D-printed with digital light processing method to develop the bone scaffold. The printing parameters were optimized based on spot curing investigation, particle size data, and UV-visible spectrophotometry. In vitro cell culture with MG-63 osteosarcoma cell lines and pH study within simulated body fluid demonstrated a noncytotoxic response of the scaffold samples. Further, the in vivo bone regeneration ability of the 3D-printed biocomposite bone scaffolds was investigated by implantation of the scaffold samples in the rabbit femur bone defect model. Enhanced angiogenesis, osteoblastic, and osteoclastic activities were observed at the bone-scaffold interface, while examining through fluorochrome labelling, histology, radiography, field emission scanning electron microscopy, and x-ray microcomputed tomography. Overall, the results demonstrated that the 3D-printed biocomposite bone scaffolds have promising potential for bone loss rehabilitation.


Subject(s)
Bone and Bones , Glass , Tissue Scaffolds , Animals , Humans , Rabbits , X-Ray Microtomography , Bone Regeneration , Printing, Three-Dimensional , Osteogenesis , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...