Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Rev Chem ; 6(3): 165, 2022 03.
Article in English | MEDLINE | ID: mdl-37117435
2.
Nat Rev Chem ; 6(4): 241, 2022 Apr.
Article in English | MEDLINE | ID: mdl-37117872
3.
Nat Rev Chem ; 5(8): 516, 2021.
Article in English | MEDLINE | ID: mdl-34222672

ABSTRACT

A polymer coating made from cosmetics-based ingredients can be applied to diverse surfaces to capture airborne droplets and mitigate the transmission of infectious respiratory diseases.

4.
Nat Rev Chem ; 5(4): 220, 2021 Apr.
Article in English | MEDLINE | ID: mdl-37117287
5.
Nat Rev Chem ; 5(5): 298, 2021 May.
Article in English | MEDLINE | ID: mdl-37117842
6.
J Chem Phys ; 148(19): 193817, 2018 May 21.
Article in English | MEDLINE | ID: mdl-30307226

ABSTRACT

A combination of X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy has been used to provide an experimental measure of nitrogen atomic charges in nine ionic liquids (ILs). These experimental results are used to validate charges calculated with three computational methods: charges from electrostatic potentials using a grid-based method (ChelpG), natural bond orbital population analysis, and the atoms in molecules approach. By combining these results with those from a previous study on sulfur, we find that ChelpG charges provide the best description of the charge distribution in ILs. However, we find that ChelpG charges can lead to significant conformational dependence and therefore advise that small differences in ChelpG charges (<0.3 e) should be interpreted with care. We use these validated charges to provide physical insight into nitrogen atomic charges for the ILs probed.

7.
Phys Chem Chem Phys ; 19(46): 31156-31167, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29139509

ABSTRACT

Experimental near edge X-ray absorption fine structure (NEXAFS) spectra are reported for 12 ionic liquids (ILs) encompassing a range of chemical structures for both the sulfur 1s and nitrogen 1s edges and compared with time-dependent density functional theory (TD-DFT) calculations. The energy scales for the experimental data were carefully calibrated against literature data. Gas phase calculations were performed on lone ions, ion pairs and ion pair dimers, with a wide range of ion pair conformers considered. For the first time, it is demonstrated that TD-DFT is a suitable method for simulating NEXAFS spectra of ILs, although the number of ions included in the calculations and their conformations are important considerations. For most of the ILs studied, calculations on lone ions in the gas phase were sufficient to successfully reproduce the experimental NEXAFS spectra. However, for certain ILs - for example, those containing a protic ammonium cation - calculations on ion pairs were required to obtain a good agreement with experimental spectra. Furthermore, significant conformational dependence was observed for the protic ammonium ILs, providing insight into the predominant liquid phase cation-anion interactions. Among the 12 investigated ILs, we find that four have an excited state that is delocalised across both the cation and the anion, which has implications for any process that depends on the excited state, for example, radiolysis. Considering the collective experimental and theoretical data, we recommend that ion pairs should be the minimum number of ions used for the calculation of NEXAFS spectra of ILs.

8.
Faraday Discuss ; 206: 183-201, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29068464

ABSTRACT

Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.

9.
Phys Chem Chem Phys ; 18(27): 18145-60, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27328990

ABSTRACT

Deep eutectic solvents (DESs) are exemplars of systems with the ability to form neutral, ionic and doubly ionic H-bonds. Herein, the pairwise interactions of the constituent components of the choline chloride-urea DES are examined. Evidence is found for a tripodal CHCl doubly ionic H-bond motif. Moreover it is found that the covalency of doubly ionic H-bonds can be greater than, or comparable with, neutral and ionic examples. In contrast to many traditional solvents, an "alphabet soup" of many different types of H-bond (OHO[double bond, length as m-dash]C, NHO[double bond, length as m-dash]C, OHCl, NHCl, OHNH, CHCl, CHO[double bond, length as m-dash]C, NHOH and NHNH) can form. These H-bonds exhibit substantial flexibility in terms of number and strength. It is anticipated that H-bonding will have a significant impact on the entropy of the system and thus could play an important role in the formation of the eutectic. The 2 : 1 urea : choline-chloride eutectic point of this DES is often associated with the formation of a [Cl(urea)2](-) complexed anion. However, urea is found to form a H-bonded urea[choline](+) complexed cation that is energetically competitive with [Cl(urea)2](-). The negative charge on [Cl(urea)2](-) is found to remain localised on the chloride, moreover, the urea[choline](+) complexed cation forms the strongest H-bond studied here. Thus, there is potential to consider a urea[choline](+)·urea[Cl](-) interaction.

10.
Chem Soc Rev ; 44(5): 1257-88, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25582457

ABSTRACT

Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak through to very strong H-bonds.

11.
J Phys Condens Matter ; 26(28): 284112, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24919772

ABSTRACT

In this paper the structural and energetic landscapes of ion-pair dimer conformers of 1,3-dimethylimidazolium based ionic liquids have been explored ([C1C1im][A])2, A = Cl(-), [NO3](-), [MeSO4](-), [OTf](-) and [BF4](-)). A common low-energy conformer has been selected for full electronic structure analysis. We have compared and contrasted each cluster based on the relative hydrogen bonding ability (ß-value) of the anion, which varies experimentally as Cl(-) > [NO3](-) ≈ [MeSO4](-) > [OTf](-) ≈ [BF4](-). Correlations between experimental ß-values, computed binding energies, charge transfer and various hydrogen bonding data have been made and outliers have been explained in terms of environmental effects present in the liquid phase. This is most evident in the structurally similar [MeSO4](-) and [OTf](-) anions that have very similar hydrogen bonding motifs, but significantly different ß-values. Moreover, detailed analysis of the cluster molecular orbitals, for each anion, reveals a subtle interplay between two modes of interaction, an in-plane traditional H-bonding and inter-planar anion-π interaction. Inter-planar anion-π interactions are particularly prominent for the [NO3](-) cluster. We have rationalized how the full range of interactions could impact on the structuring of ILs at surfaces and the effect these may have on viscosity.


Subject(s)
Anions/chemistry , Imidazolines/chemistry , Ionic Liquids/chemistry , Models, Chemical , Computer Simulation , Electron Transport , Molecular Conformation , Static Electricity
12.
Phys Chem Chem Phys ; 15(27): 11566-78, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23752557

ABSTRACT

A range of methods for the computational prediction of experimentally derived α and ß Kamlet-Taft parameters, indicators of hydrogen bond (H-bond) acidity and basicity for ionic liquids (ILs) have been explored. Most usefully, a good correlation has been established between several simple and easily computed quantities which allow for a "quick bench-top" evaluation. More accurate, but also more sophisticated methods employing TD-DFT calculations involving the Kamlet-Taft dyes have been examined and evaluated. Importantly, these techniques open up the opportunity for pre-screening and a priori prediction of properties for ILs not yet synthesised. A key fundamental insight into IL H-bonds has been the determination of an estimate for the energy associated with replacing both neutral molecules in a H-bond with ionic molecules, thus forming the "doubly ionic" H-bond found in ILs.


Subject(s)
Ionic Liquids/chemistry , Hydrogen Bonding , Molecular Structure , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...