Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 113(2): 327-334, 1997 Feb.
Article in English | MEDLINE | ID: mdl-12223611

ABSTRACT

We evaluated the use of infrared (IR) video thermography to observe directly ice nucleation and propagation in plants. An imaging radiometer with an HgCdTe long-wave (8-12 [mu]m) detector was utilized to image the thermal response of plants during freezing. IR images were analyzed in real time and recorded on videotape. Information on the videotape was subsequently accessed and analyzed utilizing IR image analysis software. Freezing of water droplets as small as 0.5 [mu]L was clearly detectable with the radiometer. Additionally, a comparison of temperature tracking data collected by the radiometer with data collected with thermocouples showed close correspondence. Monitoring of an array of plant species under different freezing conditions revealed that ice nucleation and propagation are readily observable by thermal imaging. In many instances, the ice nucleation-active bacterium Pseudomonas syringae placed on test plants could be seen to initiate freezing of the whole plant. Apparent ice nucleation by intrinsic nucleators, despite the presence of ice nucleation-active bacteria, was also evident in some species. Floral bud tissues of peach (Prunus persica) could be seen to supercool below the temperature of stem tissues, and ice nucleation at the site of insertion of the thermocouple was frequently observed. Rates of propagation of ice in different tissues were also easily measured by thermal imaging. This study demonstrates that IR thermography is an excellent method for studying ice nucleation and propagation in plants.

2.
Plant Physiol ; 108(4): 1405-1412, 1995 Aug.
Article in English | MEDLINE | ID: mdl-12228550

ABSTRACT

The pollen-pistil interactions that result in the stimulation of ethylene production and petal senescence in carnation (Dianthus caryophyllus L.) flowers were investigated. Pollination of White Sim flowers with Starlight pollen elicited an increase in ethylene production by styles, leading to increased petal ethylene and premature petal senescence. In contrast, pollination with 87-29G pollen led to an early increase in ethylene production, but this was not sustained, and did not lead to petal senescence. Both Starlight and 87-29G pollen germinated on White Sim stigmas and their tubes grew at similar rates, penetrating the length of the style. Crosses between Starlight and White Sim led to the production of viable seeds, whereas 87-29G pollen was infertile on White Sim flowers. Pollination of other carnations with 87-29G elicited ethylene production and petal senescence and led to the production of viable seeds. These results suggest that physical growth of pollen tubes is insufficient to elicit a sustained increase in ethylene production or to lead to the production of signals necessary for elicitation of petal ethylene production and senescence. Rather, the cell-cell recognition reactions leading to sexual compatibility in Dianthus appear to play a role in this interorgan signaling after pollination.

3.
Plant Physiol ; 105(4): 1239-1245, 1994 Aug.
Article in English | MEDLINE | ID: mdl-12232280

ABSTRACT

Analysis of Sorghum bicolor bloomless (bm) mutants with altered epicuticular wax (EW) structure uncovered a mutation affecting both EW and cuticle deposition. The cuticle of mutant bm-22 was about 60% thinner and approximately one-fifth the weight of the wild-type parent P954035 (WT-P954035) cuticles. Reduced cuticle deposition was associated with increased epidermal conductance to water vapor. The reduction in EW and cuticle deposition increased susceptibility to the fungal pathogen Exserohilum turcicum. Evidence suggests that this recessive mutation occurs at a single locus with pleiotropic effects. The independently occurring gene mutations of bm-2, bm-6, bm-22, and bm-33 are allelic. These chemically induced mutants had essentially identical EW structure, water loss, and cuticle deposition. Furthermore, 138 F2 plants from a bm-22 x WT-P954035 backcross showed no recombination of these traits. This unique mutation in a near-isogenic background provides a useful biological system to examine plant cuticle biosynthesis, physiology, and function.

4.
Plant Physiol ; 104(2): 737-746, 1994 Feb.
Article in English | MEDLINE | ID: mdl-12232123

ABSTRACT

Freezing behavior of wood tissue of red osier dogwood (Cornus sericea L.) cannot be explained by current concepts of freezing resistance. Previous studies indicated that water in wood tissue presumably froze extracellularly. However, it was observed that xylem ray parenchyma cells within these tissues could survive temperatures as low as -80[deg]C and the walls of these cells did not collapse during freezing (S.R. Malone and E.N. Ashworth [1991] Plant Physiol 95: 871-881). This observation was unexpected and is inconsistent with the current hypothesis of cell response during freezing. Hence, the objective of our study was to further examine the mechanism of freezing resistance of wood tissue of red osier dogwood. We studied freezing stress response of xylem ray parenchyma cells of red osier dogwood using freeze substitution and transmission electron microscopy. Wood samples were collected in winter, spring, and summer of 1992. Specimens were cooled from 0[deg]C to -60[deg]C at 5[deg]C/h. Freezing stress did not affect the structural organization of wood tissue. However, the xylem ray parenchyma cells showed two unique responses to a freezing stress: protoplasm contraction and protoplasm fragmentation. Protoplasm contraction was evident at all freezing temperatures and in tissues collected at different times of the year. Cells with fragmented protoplasm, however, were noticed only in tissues collected in spring and summer. Protoplasm contraction in winter tissue occurred without apparent damage to the protoplasm. In contrast, protoplasm contraction in spring and summer tissues was accompanied by substantial damage. No evidence of intracellular ice formation was observed in parenchyma cells exposed to freezing stress. Differences in protoplasm contraction and appearance of cells with fragmented protoplasm likely indicated seasonal changes in cold hardiness of the wood tissue of red osier dogwood. We speculate that the appearance of fragmented protoplasm may indicate that cells are being injured by an alternative mechanism in spring and summer.

5.
Tree Physiol ; 13(4): 379-88, 1993 Dec.
Article in English | MEDLINE | ID: mdl-14969993

ABSTRACT

Carbohydrate composition changed seasonally in red osier dogwood (Cornus sericea L.) stem tissues. Starch concentration was highest in fall and decreased to a minimum in midwinter. Coincident with the breakdown of starch in fall, there was an increase in the concentrations of soluble sugars. Soluble sugars were present in highest concentrations in midwinter. Glucose, fructose, sucrose, and raffinose were the predominant soluble sugars present in both bark and wood tissues. In early spring, the soluble sugar concentration decreased and the concentration of starch increased. The seasonal interchange between sugars and starch did not simply reflect a general quantitative shift in the balance between sugars and starch because qualitative changes in soluble sugars were also noted. The most striking changes involved the trisaccharide raffinose. Raffinose was barely detectable in summer and early fall, but increased to one fifth and one third of the total soluble sugars in January samples of bark and wood tissues, respectively. The potential physiological role of raffinose in overwintering red osier dogwood tissue is discussed.

6.
Plant Physiol ; 103(3): 753-761, 1993 Nov.
Article in English | MEDLINE | ID: mdl-12231977

ABSTRACT

Although cellular injury in some woody plants has been correlated with freezing of supercooled water, there is no direct evidence that intracellular ice formation is responsible for the injury. In this study we tested the hypothesis that injury to xylem ray parenchyma cells in supercooling tissues is caused by intracellular ice formation. The ultrastructure of freezing-stress response in xylem ray parenchyma cells of flowering dogwood (Cornus florida L.) was determined in tissue prepared by freeze substitution. Wood tissue was collected in the winter, spring, and summer of 1992. Specimens were cooled from 0 to -60[deg]C at a rate of 5[deg]C h-1. Freezing stress did not affect the structural organization of wood tissue, but xylem ray parenchyma cells suffered severe injury in the form of intracellular ice crystals. The temperatures at which the ice crystals were first observed depended on the season in which the tissue was collected. Intracellular ice formation was observed at -20, -10, and -5[deg]C in winter, spring, and summer, respectively. Another type of freezing injury was manifested by fragmented protoplasm with indistinguishable plasma membranes and damaged cell ultrastructure but no evidence of intracellular ice. Intracellular cavitation may be a source of freezing injury in xylem ray parenchyma cells of flowering dogwood.

7.
Planta ; 188(3): 324-31, 1992 Oct.
Article in English | MEDLINE | ID: mdl-24178321

ABSTRACT

Wheat leaf pieces were excised and freeze-fixed in the field, preparatory to low-temperature scanning electron microscopy to study distribution of ice within leaf blades, and associated cell shapes, during natural frosts. Pieces of leaf blades from wheat plants (Triticum aestivum L. 7942H1-20-8) overwintering in Indiana, USA (January, 1991), were excised and immediately freeze-fixed by manually plunging in melting freon. Cells in controls were turgid and extracellular ice was absent. The leaves of the frost-stressed plants froze at about - 2.4° C, and at that temperature extracellular ice was mainly located sub-epidermally, including in the substomatal cavity, and occupied about 14% of the fracture faces. The frequency of ice particles per unit leaf area in two specimens was 14 and 210 · mm(-2) (about 140 and 2100 · g(-1) leaf fresh-weight basis). At -9.0° C, ice filled the extracellular spaces, occupying 61% of the fracture faces. Cells were somewhat collapsed at -2.4° C and were much more collapsed at -9.0° C. The epidermal cells were more collapsed than the mesophyll cells. Tissue structure (connections with adjacent cells), wall flexibility, and ice growth may all have influenced the shapes of the collapsing cells. The experiments demonstrate the feasibility of freeze-fixation in the field. The sub-epidermal location of most ice indicates that in the field either (i) ice is nucleated sub-epidermally (implying both the presence of nucleators and the presence of liquid water in the sub-epidermal spaces) or (ii) ice is nucleated on the leaf surface, then propagates into the leaf probably through stomata.

8.
Plant Physiol ; 95(3): 871-81, 1991 Mar.
Article in English | MEDLINE | ID: mdl-16668066

ABSTRACT

The objective of the current research was to examine the response of woody plant tissues to freezing stress by using scanning electron microscopy (SEM). Nonsupercooling species red osier dogwood (Cornus stolonifera Michx.), weeping willow (Salix babylonica L.), and corkscrew willow (Salix matsudana Koidz. f. tortuosa Rehd.) survived freezing stress as low as -60 degrees C. Cell collapse of ray parenchyma cells of these species was expected but did not occur. It was concluded that ray parenchyma cells of these species do not fit into either the supercooling or extracellular freezing classifications. Tissues from flowering dogwood (Cornus florida L.), apple (Malus domestica Borkh. cv "Starking III"), red oak (Quercus rubra L.), scarlet oak (Quercus coccinea Muench.), and red ash (Fraxinus pennsylvanica Marsh) were confirmed as supercooling species, and did not survive exposures below -40 degrees C. Ray parenchyma cells of these species did not collapse in response to freezing stress, as was expected. Cell collapse along the margins of voids were observed in bark of all seven species. Voids were the result of extracellular ice crystals formed in the bark during exposure to freezing stress. Tissues prepared by freeze substitution techniques were found to be adequately preserved when compared to those prepared by conventional fixation and low temperature SEM techniques. A freezing protocol for imposing freezing stress at temperatures lower than experienced naturally in the area where the study was conducted was developed that produced responses comparable to those observed in specimens collected in the field during natural freezing events.

10.
Plant Physiol ; 92(3): 718-25, 1990 Mar.
Article in English | MEDLINE | ID: mdl-16667340

ABSTRACT

Differential thermal analysis detected two freezing events when dormant forsythia (Forsythia viridissima Lindl.) flower buds were cooled. The first occurred just below 0 degrees C, and was coincident with the freezing of adjacent woody tissues. The second exotherm appeared as a spike between -10 and -25 degrees C and was correlated with the lethal low temperature. Although this pattern of freezing was similar to that observed in other woody species, differences were noted. Both direct observations of frozen buds and examination of buds freeze-fixed at -5 degrees C demonstrated that ice formed within the developing flowers at temperatures above the second exotherm and lethal temperature. Ice crystals had formed within the peduncle and in the lower portions of the developing flower. Ice also formed within the scales. In forsythia buds, the developing floral organ did not freeze as a unit as noted in other species. Instead the low temperature exotherm appeared to correspond to the lethal freezing of supercooled water within the anthers and portions of the pistil.

11.
Plant Physiol ; 80(4): 956-60, 1986 Apr.
Article in English | MEDLINE | ID: mdl-16664748

ABSTRACT

Streptomycin (100 micrograms per milliliter), desiccation (over CaSO(4)), and ultraviolet radiation (4500 microwatts per square centimeter at 254 nanometers for 15 minutes) reduced ice nucleation activity by Pseudomonas viridiflava strain W-1 as determined by freezing drops of the bacterial suspensions. Highest residual ice nucleation activity by dead cells was obtained by desiccation, although no freezing above -3.5 degrees C was detected. The rate and extent of loss of ice nucleation activity following streptomycin and ultraviolet treatment was affected by preconditioning temperature. At 21 degrees C and above, loss of activity by dead cells was rapid and irreversible.

12.
Plant Physiol ; 79(4): 1033-7, 1985 Dec.
Article in English | MEDLINE | ID: mdl-16664524

ABSTRACT

Factors affecting the ice nucleation temperature of plants and plant tissues were examined. The mass of a sample had a marked effect on ice nucleation temperature. Small tissue samples supercooled to -10 degrees C and were not accurate predictors of the nucleation temperature of intact plants in either laboratory or field experiments. This effect was not unique to plant tissues and was observed in autoclaved and control soil samples. Ice nucleation temperatures of bean, corn, cotton, and soybean seedlings were influenced by the length of subzero exposure, presence of ice nucleation active bacteria, and leaf surface wetness. The number of factors influencing ice nucleation temperature suggested that predicting the freezing behavior of plants in the field will be complex.

13.
Plant Physiol ; 76(1): 201-4, 1984 Sep.
Article in English | MEDLINE | ID: mdl-16663798

ABSTRACT

Two model systems were used to study the freezing of water in small diameter pores. Water in pores having a diameter of less than 100 nanometers froze at lower temperatures than bulk water. Data obtained with a range of pore sizes were consistent with predicted values based on equations developed by Mazur (1965 Ann NY Acad Sci 125: 658-676), and Homshaw (1980 J Soil Sci 31: 399-414). The addition of solutes lowered the freezing point of water in small pores. We propose that the freezing behavior of water in small pores may account for some of the freezing patterns observed in plant tissues. In tissues where cells are tightly packed, share common walls, and lack intercellular spaces, the presence of water in cell wall microcapillaries would alter the freezing temperature of tissue water, impede the spread of ice, and facilitate supercooling.

14.
Plant Physiol ; 74(4): 862-5, 1984 Apr.
Article in English | MEDLINE | ID: mdl-16663523

ABSTRACT

Xylem development in eight Prunus species was examined and the relationship to deep supercooling assessed. Dormant buds of six species, P. armeniaca, P. avium, P. cerasus, P. persica, P. salicina, and P. sargentii deep supercooled. Xylem vessel elements were not observed within the dormant floral primordia of these species. Instead, discrete bundles containing procambial cells were observed. Vascular differentiation resumed and xylem continuity was established during the time that the capacity to deep supercool was lost. In P. serotina and P. virginiana, two species which do not supercool, xylem vessels ran the length of the inflorescence and presumably provided a conduit for the spread of ice into the bud. The results support the hypothesis that the lack of xylem continuity is an important feature of buds which deep supercool.

15.
Plant Physiol ; 70(5): 1475-9, 1982 Nov.
Article in English | MEDLINE | ID: mdl-16662701

ABSTRACT

Water in dormant peach (Prunus persica [L.] Batsch. var. ;Harbrite') flower buds deep supercooled. Both supercooling and the freezing of water within the bud axis and primordium as distinct components depended on the viability of the bud axis tissue. The viability of the primordium was not critical. Supercooling was prevented by wounding buds with a dissecting needle, indicating that bud structural features were important. Bud morphological features appeared to prevent the propagation of ice through the vascular tissue and into the primordium. In dormant buds, procambial cells had not yet differentiated into xylem vessel elements. Xylem continuity between the bud primordium and adjacent tissues did not appear to be established until buds had deacclimated. It was concluded that structural, morphological, and physiological features of the bud facilitated supercooling.

16.
Plant Physiol ; 67(4): 711-5, 1981 Apr.
Article in English | MEDLINE | ID: mdl-16661741

ABSTRACT

The fatty acid composition of wheat seedling roots changed in response to temperature. As temperature declined, the level of linolenic acid increased and the level of linoleic acid decreased. The distribution of phospholipid classes was not influenced by temperature. Phosphatidyl choline and phosphatidyl ethanolamine were the predominant phospholipids isolated and comprised 85% of the total lipid phosphorus. Smaller quantities of phosphatidyl glycerol, phosphatidyl inositol, phosphatidic acid, and phosphatidyl serine were isolated. The fatty acid composition of phosphatidyl choline and phosphatidyl ethanolamine were the same and temperature affected the fatty acid composition of both phospholipids in the same manner.Growth in the presence of the substituted pyridazinone, BASF 13 338 (4-chloro-5-dimethylamino-2-phenyl-3(2H)pyridazinone), reduced the level of linolenic acid and increased the level of linoleic acid in the phosphatidyl choline, phosphatidyl ethanolamine, and total polar lipid fractions. BASF 13 338 did not affect the levels of palmitate, stearate, and oleate or the distribution of phospholipid classes.Respiration rates of wheat root tips were measured over a range of temperatures. The respiration rate declined as the temperature decreased. Neither the temperature at which the tissue was grown nor BASF 13 338 treatment influenced the ability of root tips to respire at any temperature from 4 to 30 C. The results indicated that the relative proportion of linolenic acid to linoleic acid did not influence the plants ability to grow and respire over the range of temperatures tested.

SELECTION OF CITATIONS
SEARCH DETAIL
...