Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Pharmacol Pharm Sci ; 2024: 4541581, 2024.
Article in English | MEDLINE | ID: mdl-38235482

ABSTRACT

Background: The emergence of drug-resistant parasites impedes disease management and eradication efforts. Hence, a reinvigorated attempt to search for potent lead compounds in the mangroves is imperative. Aim: This study evaluates in vitro antiplasmodial activity, antioxidant properties, and cytotoxicity of A. africana leaf alkaloidal extracts. Methods: The A. africana leaves were macerated with 70% ethanol to obtain a total crude extract. Dichloromethane and chloroform-isopropanol (3 : 1, v/v) were used to extract the crude alkaloids and quaternary alkaloids from the total crude. The antiplasmodial activities of the alkaloidal extracts were performed against 3D7 P. falciparum chloroquine-sensitive clone via the SYBR Green I fluorescence assay with artesunate serving as the reference drug. The alkaloidal extracts were further evaluated for antioxidant properties via the total antioxidant capacity (TAC), the total glutathione concentration (GSH), the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay, and the ferric-reducing antioxidant power (FRAP) methods. The cytotoxic activity of the alkaloidal extracts was tested on erythrocytes using a 3-(4,5-dimethylthiazol-2-yl)-5-diphenyltetrazolium bromide-MTT assay with little modification. The phytocompounds in the alkaloidal extracts were identified via gas chromatography-mass spectrometry (GC-MS) techniques. Results: The total crude extract showed good antiplasmodial activity (IC50 = 11.890 µg/mL). The crude and quaternary alkaloidal extracts demonstrated promising antiplasmodial effects with IC50 values of 6.217 and 6.285 µg/mL, respectively. The total crude and alkaloidal extracts showed good antioxidant properties with negligible cytotoxicity on erythrocytes with good selectivity indices. The GC-MS spectral analysis of crude alkaloidal extracts gave indole and isoquinoline alkaloids and several other compounds. Dexrazoxane was found to be the main compound predicted, with an 86% peak area in the quaternary alkaloidal extract. Conclusion: The crude and quaternary alkaloidal extracts exhibited antiplasmodial activities and ability to inhibit oxidative stress with negligible toxicity on erythrocytes. This may be good characteristics to avoid oxidative stress related to Plasmodium infection in the treatment of malaria.

2.
PLoS Negl Trop Dis ; 16(9): e0010645, 2022 09.
Article in English | MEDLINE | ID: mdl-36107859

ABSTRACT

We have a long-term vision to develop drug discovery research capacity within Ghana, to tackle unmet medical needs in Ghana and the wider West African region. However, there are several issues and challenges that need to be overcome to enable this vision, including training, human resource, equipment, infrastructure, procurement, and logistics. We discuss these challenges from the context of Ghana in this review. An important development is the universities and research centres within Ghana working together to address some of these challenges. Therefore, while there is a long way to go to fully accomplish our vision, there are encouraging signs.


Subject(s)
Drug Discovery , Ghana , Humans
3.
Bioorg Med Chem ; 23(21): 7007-14, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26439661

ABSTRACT

Nordihydroguaiaretic acid (NDGA) is a natural polyphenol with a broad spectrum of pharmacological properties. However, its usefulness is hindered by the lack of understanding of its pharmacological and toxicological pathways. Previously we showed that oxidative cyclisation of NDGA at physiological pH forms a dibenzocyclooctadiene that may have therapeutic benefits whilst oxidation to an ortho-quinone likely mediates toxicological properties. NDGA analogues with higher propensity to cyclise under physiologically relevant conditions might have pharmacological implications, which motivated this study. We synthesized a series of NDGA analogues which were designed to investigate the structural features which influence the intramolecular cyclisation process and help to understand the mechanism of NDGA's autoxidative conversion to a dibenzocyclooctadiene lignan. We determined the ability of the NDGA analogues investigated to form dibenzocyclooctadienes and evaluated the oxidative stability at pH 7.4 of the analogues and the stability of any dibenzocyclooctadienes formed from the NDGA analogues. We found among our group of analogues the catechols were less stable than phenols, a single catechol-substituted ring is insufficient to form a dibenzocyclooctadiene lignan, and only compounds possessing a di-catechol could form dibenzocyclooctadienes. This suggests that quinone formation may not be necessary for cyclisation to occur and the intramolecular cyclisation likely involves a radical-mediated rather than an electrophilic substitution process. We also determined that the catechol dibenzocyclooctadienes autoxidised at comparable rates to the parent catechol. This suggests that assigning in vitro biological activity to the NDGA dibenzocyclooctadiene is premature and requires additional study.


Subject(s)
Antioxidants/chemistry , Masoprocol/analogs & derivatives , Antioxidants/chemical synthesis , Antioxidants/metabolism , Cyclization , Kinetics , Masoprocol/chemical synthesis , Masoprocol/metabolism , Oxidation-Reduction , Quinones/chemistry
4.
J Am Chem Soc ; 135(16): 5970-3, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23586652

ABSTRACT

The ntd operon in Bacillus subtilis is essential for biosynthesis of 3,3'-neotrehalosadiamine (NTD), an unusual nonreducing disaccharide reported to have antibiotic properties. It has been proposed that the three enzymes encoded within this operon, NtdA, NtdB, and NtdC, constitute a complete set of enzymes required for NTD synthesis, although their functions have never been demonstrated in vitro. We now report that these enzymes catalyze the biosynthesis of kanosamine from glucose-6-phosphate: NtdC is a glucose-6-phosphate 3-dehydrogenase, NtdA is a pyridoxal phosphate-dependent 3-oxo-glucose-6-phosphate:glutamate aminotransferase, and NtdB is a kanosamine-6-phosphate phosphatase. None of these enzymatic reactions have been reported before. This pathway represents an alternate route to the previously reported pathway from Amycolatopsis mediterranei which derives kanosamine from UDP-glucose.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Glucosamine/biosynthesis , Glucose-6-Phosphate/metabolism , Operon/genetics , Pyridoxal Phosphate/metabolism , Spectrophotometry, Ultraviolet , Trehalose/analogs & derivatives , Uridine Diphosphate Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...