Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Phytochemistry ; 222: 114092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604323

ABSTRACT

Phytochemical study of the fruits of Chisocheton erythrocarpus (Hiern) allowed the identification of eight undescribed limonoids, namely erythrocarpines O - V (1-6, 7a and 7b), along with seven known compounds. The structures of these compounds were elucidated based on spectroscopic and HRMS data, along with electronic circular dichroism to configure the absolute configuration. Erythrocarpines O and P are γ-hydroxybutenolide analogs of mexicanolide-type limonoids while erythrocarpine Q - V are phragmalin-type limonoids possessing a 1,29-oxymethylene bridge with either benzoyl or cinnamoyl moiety in their structures. Mosquito larvicidal activity revealed that crude DCM extract of C. erythrocarpus possessed a good larvicidal effect against Aedes aegypti larvae in 48 h (LC50 = 153.0 ppm). Subsequent larvicidal activity of isolated compounds indicated that erythrocarpine G (10) and 14-deoxyxyloccensin K (11) were responsible for the enhanced larvicidal effect of the extract, reporting LC50 values of 18.55 ppm and 41.16 ppm, respectively. Moreover, residual activity testing of the crude DCM extract revealed that the duration of its larvicidal effects is up to 14 days, where it maintained a 98 % larval mortality throughout the test period, under laboratory conditions.


Subject(s)
Aedes , Fruit , Insecticides , Larva , Limonins , Meliaceae , Animals , Larva/drug effects , Limonins/pharmacology , Limonins/isolation & purification , Limonins/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/isolation & purification , Fruit/chemistry , Aedes/drug effects , Meliaceae/chemistry , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug
2.
Article in English | MEDLINE | ID: mdl-38109287

ABSTRACT

Agrichemical adjuvants that combine a highly selective, efficient, and active mode of operation are critically needed to realize a more sustainable approach to their usage. Herein, we report the synthesis and full characterization of two new metal-organic frameworks (MOFs), termed UPMOF-1 and UPMOF-2, that were constructed from eco-friendly Ca2+ ions and naturally occurring, low-molecular weight plant acids, l-malic and d-tartaric acid, respectively. Upon structural elucidation of both MOFs, a widely used fungicide, hexaconazole (Hex), was loaded on the structures, reaching binding affinities of -5.0 and -3.5 kcal mol-1 and loading capacities of 63% and 62% for Hex@UPMOF-1 and Hex@UPMOF-2, respectively, as a result of the formation of stable host-guest interactions. Given the framework chemistry of the MOFs and their predisposition to disassembly under relevant agricultural conditions, the sustained release kinetics were determined to show nearly quantitative release (98% and 95% for Hex@UPMOF-1 and Hex@UPMOF-2, respectively) after >500 h, a release profile drastically different than the control (>80% release in 24 h), from which the high efficiency of these new systems was established. To confirm their high selectivity and activity, in vitro and in vivo studies were performed to illustrate the abilities of Hex@UPMOF-1 and Hex@UPMOF-2 to combat the known aggressive pathogen Ganoderma boninense that causes basal stem rot disease in oil palm. Accordingly, at an extremely low concentration of 0.05 µg mL-1, both Hex@UPMOF-1 and Hex@UPMOF-2 were demonstrated to completely inhibit (100%) G. boninense growth, and during a 26 week in vivo nursery trial, the progression of basal stem rot infection was completely halted upon treatment with Hex@UPMOF-1 and Hex@UPMOF-2 and seedling growth was accelerated given the additional nutrients supplied via the disassembly of the MOFs. This study represents a significant step forward in the design of adjuvants to support the environmentally responsible use of agrichemical crop protection.

3.
J Pestic Sci ; 48(2): 54-60, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37361486

ABSTRACT

Development of mycoinsecticides with Cordyceps fumosorosea as an active ingredient is established as an alternate way to control the Metisa plana population while reducing chemical insecticide dependence. Three mycoinsecticide formulations (SS6, SS7, and SS8) with dispersing and wetting agents were developed as wettable powder formulations in this trial. SS8 demonstrated the best wettability, suspensibility, and dispersibility with viability at 107 (CFU)/mL even after three months of storage. However, SS7 developed with C. fumosorosea as an active ingredient was found to effectively reduce the bagworm population by more than 95%. The application of all mycoinsecticide formulations in the infested oil palm area was able to reduce the M. plana population by more than 95%, 30 DAT. The formulations also show no significant increase in mortality of the oil palm pollinator, Elaeidobius kamerunicus. This finding indicates that the C. fumosorosea tested has potential for managing bagworms without harming pollinators on oil palm plantations.

4.
Insects ; 14(5)2023 May 20.
Article in English | MEDLINE | ID: mdl-37233110

ABSTRACT

The red palm weevil (RPW), Rhynchophorus ferrugineus, poses a severe threat to agro-industrial crops, particularly major cultivated palm species. Infestations result in economic losses due to reduced fruit quality and yield. The entomopathogenic fungus, Metarhizium anisopliae, has shown promise as a potential biocontrol agent against the RPW. However, the use of an emulsion formulation of M. anisopliae for managing this serious insect pest has yet to be fully explored. The oil-emulsion formulation containing this entomopathogen may enhance the conidia's stability, prolong its lifetime, and reduce the impact of heat stress or UV irradiation on the fungus. Therefore, this study aimed to investigate the bioefficacy of a new oil-in-glycerol emulsion formulation on mycoinsecticidal activity against RPW adults by direct and indirect bioassays. Results showed that conidia concentration was directly proportional to the RPW mortality percentage. The LT50 of 8.183 days was achieved by the conidial formulation against RPW, with a significantly lower LC50 (1.910 × 105 conidia mL-1) compared to the aqueous conidia suspension (LT50 = 8.716 days; LC50 = 7.671 × 105 conidia mL-1). Indirect bioassays revealed that the oil-in-glycerol emulsion had a disease-spreading ability that resulted in up to 56.67% RPW mortality. A zero E-value reading indicates that the DNA sequence being studied is highly similar to that of the fungal species M. anisopliae, which has been identified in the NCBI database. Although the new emulsion formulation has improved the efficacy and pathogenicity of M. anisopliae in vitro, it is important to also consider the fungal pathogen's compatibility with other agricultural practices to prevent any loss of control efficiency in the actual usage environment.

5.
PLoS One ; 18(1): e0280159, 2023.
Article in English | MEDLINE | ID: mdl-36608038

ABSTRACT

Herbicides made from natural molecules are cost-effective and environmentally friendly alternatives to synthetic chemical herbicides for controlling weeds in the crop field. In this context, an investigation was carried out to ascertain the allelopathic potential of Parthenium hysterophorus L. as well as to identify its phenolic components which are responsible for the allelopathic effect. During the observation, the rate of germination and seedlings' growth of Vigna subterranea (L.) Verdc, Raphanus sativus (L.) Domin, Cucurbita maxima Duchesne., Cucumis sativus L., Solanum lycopersicum L., Capsicum frutescens L., Zea mays L., Abelmoschus esculentus (L.) Moench, Daucus carota L., Digitaria sanguinalis (L.) Scop and Eleusine indica (L.) Gaertn were investigated by using methanol extracts, isolated from leaf, stem and flower of P. hysterophorus. Six concentrations (i.e., 25, 50, 75, 100, and 150 g L-1) of methanol extracts were isolated from P. hysterophorus leaf, stem and flower were compared to the control (distilled water). It was also observed that the concentration of methanol extracts (isolated from P. hysterophorus leaf, stem, and flower) while increased, the rate of seed germination and seedling growth of both selected crops and weeds decreased drastically, indicating that these methanol extracts have allelopathic potential. The allelopathic potential of P. hysterophorus leaf extraction (811) was found higher than the extraction of the stem (1554) and flower (1109), which is confirmed by EC50 values. The principal component analysis (PCA) was also used to re-validate the allelopathic potentiality of these methanol extracts and confirmed that Raphanus sativus, Solanum lycopersicum, Capsicum frutescens, Abelmoschus esculentus, Daucus carota, Digitaria sanguinalis, and Eleusine indica were highly susceptible to allelochemicals of P. hysterophorus. Besides these, the LC-MS analysis also revealed that the P. hysterophorus leaf extract contained 7 phenolic compounds which were responsible for the inhibition of tested crops and weeds through allelopathic effect. The results of the current study revealed that the leaf of P. hysterophorus is a major source of allelopathic potential on crops and weeds and which could be used as a valuable natural herbicide in the future for the sustainability of crop production through controlling weeds.


Subject(s)
Herbicides , Methanol , Seedlings , Plant Weeds , Herbicides/pharmacology , Crops, Agricultural , Plant Extracts/pharmacology
6.
Plants (Basel) ; 11(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36501249

ABSTRACT

This current investigation was undertaken both in laboratory and glasshouse for documentation and quantification of phytochemicals from different parts of the parthenium (Parthenium hysterophorus L.) plant through LC-MS and HPLC to study their effect on two crops namely, Bambara groundnut (Vigna subterranean L.) and maize (Zea mays L.), and six different types of weed e.g., Digitaria sanguinalis, Eleusine indica, Ageratum conyzoides, Cyperus iria, Euphorbia hirta, and Cyperus difformis. The parthenium methanolic leaf extracts at 25, 50, 75, and 100 g L-1 were sprayed in the test crops and weeds to assess their physiological and biochemical reactions after 6, 24, 48, and 72 h of spraying these compounds (HAS). The LC-MS analysis confirmed seven types of phytochemicals (caffeic acid, ferulic acid, vanillic acid, parthenin, chlorogenic acid, quinic acid, and p-anisic acid) in the parthenium leaf extract that were responsible for the inhibition of tested crops and weeds. From the HPLC analysis, higher amounts in leaf methanol extracts (40,752.52 ppm) than those of the stem (2664.09 ppm) and flower extracts (30,454.33 ppm) were recorded. Parthenium leaf extract at 100 g L-1 had observed higher phytotoxicity on all weed species except C. difformis. However, all crops were found safe under this dose of extraction. Although both crops were also affected to some extent, they could recover from the stress after a few days. The photosynthetic rate, transpiration rate, stomatal conductance, carotenoid and chlorophyll content were decreased due to the application of parthenium leaf extract. However, when parthenium leaf extract was applied at 100 g L-1 for 72 h, the malondialdehyde (MDA) and proline content were increased in all weeds. Enzymatic antioxidant activity (e.g., superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) contents) were also elevated as a result of the sprayed parthenium leaf extract. The negative impact of physiological and biochemical responses as a consequence of the parthenium leaf extract led the weed species to be stressed and finally killed. The current findings show the feasibility of developing bioherbicide from the methanolic extract of parthenium leaf for controlling weeds, which will be cost-effective, sustainable, and environment friendly for crop production during the future changing climate.

7.
Toxins (Basel) ; 14(8)2022 08 18.
Article in English | MEDLINE | ID: mdl-36006222

ABSTRACT

The utilization of the invasive weed, Parthenium hysterophorus L. for producing value-added products is novel research for sustaining our environment. Therefore, the current study aims to document the phytotoxic compounds contained in the leaf of parthenium and to examine the phytotoxic effects of all those phytochemicals on the seed sprouting and growth of Crabgrass Digitaria sanguinalis (L.) Scop. and Goosegrass Eleusine indica (L.) Gaertn. The phytotoxic substances of the methanol extract of the P. hysterophorus leaf were analyzed by LC-ESI-QTOF-MS=MS. From the LC-MS study, many compounds, such as terpenoids, flavonoids, amino acids, pseudo guaianolides, and carbohydrate and phenolic acids, were identified. Among them, seven potential phytotoxic compounds (i.e., caffeic acid, vanillic acid, ferulic acid, chlorogenic acid, quinic acid, anisic acid, and parthenin) were documented, those are responsible for plant growth inhibition. The concentration needed to reach 50% growth inhibition in respect to germination (ECg50), root length (ECr50), and shoot length (ECs50) was estimated and the severity of phytotoxicity of the biochemicals was determined by the pooled values (rank value) of three inhibition parameters. The highest growth inhibition was demarcated by caffeic acid, which was confirmed and indicated by cluster analysis and principal component analysis (PCA). In the case of D. sanguinalis, the germination was reduced by 60.02%, root length was reduced by 76.49%, and shoot length was reduced by 71.14% when the chemical was applied at 800 µM concentration, but in the case of E. indica, 100% reduction of seed germination, root length, and shoot length reduction occurred at the same concentration. The lowest rank value was observed from caffeic acids in both E. indica (rank value 684.7) and D. sanguinalis (909.5) caused by parthenin. It means that caffeic acid showed the highest phytotoxicity. As a result, there is a significant chance that the parthenium weed will be used to create bioherbicides in the future.


Subject(s)
Alkaloids , Asteraceae , Eleusine , Alkaloids/pharmacology , Asteraceae/chemistry , Digitaria , Documentation , Plant Extracts/chemistry , Plant Leaves/chemistry
8.
Microorganisms ; 10(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889178

ABSTRACT

Industrial crops including coconut palm and other palm species are seriously infested by red palm weevil (RPW), resulting in significant economic damage globally. Therefore, this study aimed to develop a mycoinsecticide utilizing conidia of Metarhizium anisopliae to control RPW and sought to investigate a new emulsion formulation for the influences of storage temperature and heat stress on conidia germination in an oil-in-glycerol emulsion system. The mycoinsecticide is an emulsion formulation which comprises an oil carrier, non-ionic surfactants, water, and glycerol, which was optimized by premixing the oil and non-ionic surfactant in different weight ratios (1:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4: 6, 3: 7, 2:8, 1:9, and 0:1). From three selected oil-in-glycerol formulations, F25 was more stable in storage and had a smaller particle size (between 154.3 and 236.4 nm in diameter) and stable zeta potential (above + 30 mV) with low surface tension (29.83 ± 0.24 mN/m to 30.72 ± 0.11 mN/m at room temperature. Extended conidial viability was observed at 4 °C overall; the emulsion formulation maintained 12-15% conidial viability until the eighth week at room temperature. Heat of over 30 °C showed an inhibitory effect on conidial germination. This study revealed that the oil-in-glycerol formulation was stable and able to prolong conidial shelf life as compared to non-formulated conidia.

9.
Plants (Basel) ; 10(7)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34371648

ABSTRACT

The allelopathic effect of various concentrations (0, 6.25, 12.5, 50 and 100 g L-1) of Parthenium hysterophorus methanol extract on Cyperus iria was investigated under laboratory and glasshouse conditions. No seed germination was recorded in the laboratory when P. hysterophorus extract was applied at 50 g L-1. In the glasshouse, C. iria was mostly injured by P. hysterophorus extract at 100 g L-1. The phytochemical constituents of the methanol extract of P. hysterophorus were analyzed by LC-ESI-QTOF-MS=MS. The results indicated the presence of phenolic compounds, terpenoids, alkaloids, amino acids, fatty acids, piperazines, benzofuran, indole, amines, azoles, sulfonic acid and other unknown compounds in P. hysterophorus methanol extract. A comparative study was also conducted between P. hysterophorus extract (20, 40 and 80 g L-1) with a synthetic herbicide (glyphosate and glufosinate ammonium at 2 L ha-1) as a positive control and no treatment (negative control) on Ageratumconyzoides, Oryzasativa and C. iria. The growth and biomass of test weeds were remarkably inhibited by P. hysterophorus extract. Nevertheless, no significant difference was obtained when P. hysterophorus extract (80 g L-1) and synthetic herbicides (glyphosate and glufosinate ammonium) were applied on A.conyzoides.

10.
Molecules ; 26(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202405

ABSTRACT

The bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious rice diseases, causing huge yield losses worldwide. Several technologies and approaches have been opted to reduce the damage; however, these have had limited success. Recently, scientists have been focusing their efforts on developing efficient and environmentally friendly nanobactericides for controlling bacterial diseases in rice fields. In the present study, a scanning electron microscope (SEM), transmission electron microscope (TEM), and a confocal laser scanning microscope (CLSM) were utilized to investigate the mode of actions of ginger EOs on the cell structure of Xoo. The ginger EOs caused the cells to grow abnormally, resulting in an irregular form with hollow layers, whereas the dimethylsulfoxide (DMSO) treatment showed a typical rod shape for the Xoo cell. Ginger EOs restricted the growth and production of biofilms by reducing the number of biofilms generated as indicated by CLSM. Due to the instability, poor solubility, and durability of ginger EOs, a nanoemulsions approach was used, and a glasshouse trial was performed to assess their efficacy on BLB disease control. The in vitro antibacterial activity of the developed nanobactericides was promising at different concentration (50-125 µL/mL) tested. The efficacy was concentration-dependent. There was significant antibacterial activity recorded at higher concentrations. A glasshouse trial revealed that developed nanobactericides managed to suppress BLB disease severity effectively. Treatment at a concentration of 125 µL/mL was the best based on the suppression of disease severity index, AUDPC value, disease reduction (DR), and protection index (PI). Furthermore, findings on plant growth, physiological features, and yield parameters were significantly enhanced compared to the positive control treatment. In conclusion, the results indicated that ginger essential oils loaded-nanoemulsions are a promising alternative to synthetic antibiotics in suppressing Xoo growth, regulating the BLB disease, and enhancing rice yield under a glasshouse trial.


Subject(s)
Oils, Volatile , Oryza , Plant Diseases/microbiology , Xanthomonas/growth & development , Zingiber officinale/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Oryza/chemistry , Oryza/growth & development , Oryza/microbiology , Oryza/ultrastructure , Xanthomonas/ultrastructure
11.
Plants (Basel) ; 10(6)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198474

ABSTRACT

The current study was designed to investigate the effect of Parthenium hysterophorus L. methanol extract on Ageratum conyzoides L., Oryza sativa f. spontanea (weedy rice) and Cyperus iria L. in glasshouse condition. Here, Parthenium hysterophorus methanol extract at 20, 40, and 60 g L-1 concentrations was applied on the test species to examine their physiological and biochemical responses at 6, 24, 48 and 72 h after spraying (HAS). The phytotoxicity of P. hysterophorus was strong on A. conyzoides compared to weedy rice and Cyperus iria at different concentrations and exposure times. There was a reduction in photosynthesis rate, stomatal conductance, transpiration, chlorophyll content and carotenoid content when plants were treated with P. hysterophorus extract concentrations. Exposure to P. hysterophorus (60 g L-1) at 24 HAS increased malondialdehyde (MDA) and proline content by 152% and 130%, respectively, in A. conyzoides compared with control. The activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)) were also increased in the presence of P. hysterophorus extract. Present findings confirm that the methanol extract of P. hysterophorus can disrupt the physiological and biochemical mechanism of target weeds and could be used as an alternative to chemical herbicides.

12.
Physiol Mol Biol Plants ; 27(5): 969-983, 2021 May.
Article in English | MEDLINE | ID: mdl-34108823

ABSTRACT

Limnocharis flava (L.) Buchenau is a problematic weed in rice fields and water canals of Southeast Asia, and in Malaysia this invasive aquatic weed species has evolved multiple resistance to synthetic auxin herbicide and acetohydroxyacid synthase (AHAS) inhibitors. In this study, it was revealed that, a single nucleotide polymorphism (SNP) at amino acid position 376, where C was substituted to G at the third base of the same codon (GAC to GAG), resulting in Aspartate (Asp) substitution by Glutamate (Glu) was the contributing resistance mechanism in the L. flava population to AHAS inhibitors. In vitro assay further proved that, all the L. flava individuals carrying AHAS resistance mutation exhibited decreased-sensitivity to AHAS inhibitors at the enzyme level. In the bensulfuron-methyl whole-plant bioassay, high resistance indices (RI) of 328- and 437-fold were recorded in the absence and presence of malathion (the P450 inhibitor), respectively. Similarly, translocation and absorption of bensulfuron-methyl in both resistant and susceptible L. flava populations showed no remarkable differences, hence eliminated the possible co-existence of non-target-site resistance mechanism in the resistant L. flava. This study has confirmed another new case of a target-site resistant weed species to AHAS-inhibitors.

13.
Plant Dis ; 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33851868

ABSTRACT

Guava (Psidium guajava L.) is an economically important tropical fruit crop and is cultivated extensively in Malaysia. In September and October 2019, postharvest fruit rot symptoms were observed on 30% to 40% of guava fruit cv. Kampuchea in fruit markets of Puchong and Ipoh cities in the states of Selangor and Perak, Malaysia. Initial symptoms appeared as brown, irregular, water-soaked lesions on the upper portion of the fruit where it was attached to the peduncle. Subsequently, lesions then progressed to cover the whole fruit (Fig.1A). Lesions were covered with an abundance of black pycnidia and grayish mycelium. Ten symptomatic guava fruit were randomly collected from two local markets for our investigation. For fungal isolation, small fragments (5×5 mm) were excised from the lesion margin, surface sterilized with 0.5% NaOCl for 2 min, rinsed three times with sterile distilled water, placed on potato dextrose agar (PDA) and incubated at 25 °C with 12-h photoperiod for 2-3 days. Eight single-spore isolates with similar morphological characteristics were obtained and two representative isolates (P8 and S9) were characterized in depth. Colonies on PDA were initially composed of grayish-white aerial mycelium, but turned dark-gray after 7 days (Fig. 1B). Abundant black pycnidia were observed after incubation for 4 weeks. Immature conidia were hyaline, aseptate, ellipsoid, thick-walled, and mature conidia becoming dark brown and 1-septate with longitudinal striations, 25.0 - 27.0 ± 2.5 × 13.0 - 14.0 ± 1.0 µm (n = 30) (Fig.1C, D). On the basis of morphology, both representative isolates were identified as Lasiodiplodia theobromae (Pat.) Griffon & Maubl. (Alves et al. 2008). For molecular identification, genomic DNA of the two isolates was extracted using the DNeasy plant mini kit (Qiagen, USA). The internal transcribed spacer (ITS) region of rDNA and translation elongation factor 1-alpha (EF1-α) genes were amplified using ITS5/ITS4 and EF1-728F/EF1-986R primer set, respectively (White et al. 1990, Carbone and Kohn 1999). BLASTn analysis of the resulting ITS and EF1-α sequences indicated 100% identity to L. theobromae ex-type strain CBS 164.96 (GenBank accession nos: AY640255 and AY640258, respectively) (Phillips et al. 2013). The ITS (MW380428, MW380429) and EF1-α (MW387153, MW387154) sequences were deposited in GenBank. Phylogenetic analysis using the maximum likelihood based on the combined ITS-TEF sequences indicated that the isolates formed a strongly supported clade (100% bootstrap value) to the related L. theobromae (Kumar et al. 2016) (Fig.2). A pathogenicity test of two isolates was conducted on six healthy detached guava fruits per isolate. The fruit were surface sterilized using 70% ethanol and rinsed twice with sterile water prior inoculation. The fruit were wound-inoculated using a sterile needle according to the method of de Oliveira et al. (2014) and five-mm-diameter mycelial agar plugs from 7-days-old PDA culture of the isolates were placed onto the wounds. Six additional fruit were wound inoculated using sterile 5-mm-diameter PDA agar plugs to serve as controls. Inoculated fruit were placed in sterilized plastic container and incubated in a growth chamber at 25 ± 1 °C, 90% relative humidity with a photoperiod of 12-h. The experiment was conducted twice. Five days after inoculation, symptoms as described above developed on the inoculated sites and caused a fruit rot, while control treatment remained asymptomatic. L. theobromae was reisolated from all symptomatic tissues and confirmed by morphological characteristics and confirmed by PCR using ITS region. L. theobromae has recently been reported to cause fruit rot on rockmelon in Thailand (Suwannarach et al. 2020). To our knowledge, this is the first report of L. theobromae causing postharvest fruit rot on guava in Malaysia. The occurrence of this disease needs to be monitored as this disease can reduce the marketable yield of guava. Preventive strategies need to be developed in the field to reduce postharvest losses.

14.
Plant Pathol J ; 36(6): 515-535, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33312089

ABSTRACT

Essential oils (EOs) have gained a renewed interest in many disciplines such as plant disease control and medicine. This review discusses the components of ginger EOs, their mode of action, and their potential nanotechnology applications in controlling tropical plant diseases. Gas chromatography-mass spectroscopy (GC-MS), high-performance liquid chromatography, and headspace procedures are commonly used to detect and profile their chemical compositions EOs in ginger. The ginger EOs are composed of monoterpenes (transcaryophyllene, camphene, geranial, eucalyptol, and neral) and sesquiterpene hydrocarbons (α-zingiberene, ar-curcumene, ß-bisabolene, and ß-sesquiphellandrene). GC-MS analysis of the EOs revealed many compounds but few compounds were revealed using the headspace approach. The EOs have a wide range of activities against many phytopathogens. EOs mode of action affects both the pathogen cell's external envelope and internal structures. The problems associated with solubility and stability of EOs had prompted the use nanotechnology such as nanoemulsions. The use of nanoemulsion to increase efficiency and supply of EOs to control plant diseases control was discussed in this present paper. The findings of this review paper may accelerate the effective use of ginger EOs in controlling tropical plant diseases.

15.
Biology (Basel) ; 9(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932993

ABSTRACT

Gray mold disease caused by Botrytis cinerea is a damaging postharvest disease in tomato plants, and it is known to be a limiting factor in tomato production. This study aimed to evaluate antifungal activities of Vernonia amygdalina leaf extracts against B. cinerea and to screen the phytochemical compound in the crude extract that had the highest antifungal activity. In this study, crude extracts of hexane, dichloromethane, methanol, and water extracts with concentration levels at 100, 200, 300, 400, and 500 mg/mL were shown to significantly affect the inhibition of B. cinerea. Among the crude extracts, dichloromethane extract was shown to be the most potent in terms of antifungal activities. The SEM observation proved that the treatment altered the fungal morphology, which leads to fungal growth inhibition. For the in vivo bioassay, the fruits treated with dichloromethane extract at 400 and 500 mg/mL showed the lowest disease incidence with mild severity of infection. There were 23 chemical compounds identified in V. amygdalina dichloromethane extract using GCMS analysis. The top five major compounds were dominated by squalene (16.92%), phytol (15.05%), triacontane (11.31%), heptacosane (7.14%), and neophytadiene (6.28%). Some of these significant compounds possess high antifungal activities. This study proved that V. amygdalina from dichloromethane extract could be useful for inhibiting gray mold disease on tomato fruit and has potential as a natural antifungal agent.

16.
J Oleo Sci ; 68(8): 747-757, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31292338

ABSTRACT

The present study revealed the optimization of nanoemulsion containing palm oil derivatives and Parthenium hysterophorus L. crude extract (PHCE) as pre-emergence herbicide formulation against Diodia ocimifolia. The nanoemulsion formulation was prepared by high energy emulsification method, and it was optimized by mixture experimental design (MED). From the optimization process, analysis of variance (ANOVA) showed a fit quadratic polynomial model with an optimal formulation composition containing 30.91% of palm kernel oil ester (PKOE), 28.48% of mixed surfactants (Tensiofix and Tween 80, 8:2), 28.32% of water and 12.29% of PHCE. The reading of both experimental and predicted particle size in the verification experiment were acceptable with a residual standard error (RSE) was less than 2%. Under the optimal condition, the smallest particle size obtained was 140.10 nm, and the particle was shown by morphology analysis to be spherical and demonstrated good stability (no phase separation) under centrifugation and different storage conditions (25 ± 5°C and 45°C). Nanoemulsion stored for 60 days exhibits monodisperse emulsion with a slight increase of particle size. The increase in particle size over time might have contributed by Ostwald ripening phenomenon which is shown by a linear graph from Ostwald ripening rate analysis. In the in vitro germination test, P. hysterophorus nanoemulsion (PHNE) was shown to cause total inhibition of D. ocimifolia seed at lower concentration (5 g L-1) as compared to PHCE (10 g L-1). The finding of the research could potentially serve as a platform for the development of palm oil based formulation containing plant crude extract for green weed management.


Subject(s)
Asteraceae/chemistry , Emulsions/chemistry , Herbicides/toxicity , Plant Extracts/toxicity , Plant Oils/chemistry , Herbicides/chemistry , Herbicides/isolation & purification , Palm Oil , Parthenogenesis , Particle Size , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rubiaceae/drug effects , Seeds/drug effects , Surface Tension
17.
J Pestic Sci ; 42(4): 158-165, 2017 Nov 24.
Article in English | MEDLINE | ID: mdl-30363095

ABSTRACT

This study aimed to improve the efficacy of azadirachtin (Azadirachta indica. A. Juss) against two serious pest species of stored products, Sitophilus oryzae (L.) and Tribolium castaneum (Herbst), through nano-emulsion formulations. Pseudoternary phase diagrams were constructed consisting of an emulsion system of an active ingredient (neem oil), surfactant (polysorbate or alkylpolyglucoside), and water. Isotropic regions were formed in the pseudoternary phase diagrams, and four formulations were selected from the isotropic regions and characterized according to particle size, particle aging, zeta potential, stability and thermostability, surface tension, viscosity, and pH. The selected formulations showed particle sizes of 208-507 nm in diameter. The result of contact toxicity demonstrated excellent mortality of S. oryzae and T. castaneum adults, with a mortality range of 85-100% and 74-100%, respectively, at a 1% azadirachtin concentration after only 2 days of exposure. Compared to non-formulated neem oil, the nano-emulsion formulations significantly increased the mortality of the tested species.

SELECTION OF CITATIONS
SEARCH DETAIL
...