Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Headache ; 62(7): 780-791, 2022 07.
Article in English | MEDLINE | ID: mdl-35676889

ABSTRACT

OBJECTIVE: Our laboratory has recently shown that there is a decrease in neuronal complexity in head pain processing regions in mouse models of chronic migraine-associated pain and aura. Importantly, restoration of this neuronal complexity corresponds with anti-migraine effects of known and experimental pharmacotherapies. The objective of the current study was to expand this work and examine other brain regions involved with pain or emotional processing. We also investigated the generalizability of our findings by analyzing neuronal cytoarchitectural changes in a model of complex regional pain syndrome (CRPS), a peripheral pain disorder. METHODS: We used the nitroglycerin (NTG) model of chronic migraine-associated pain in which mice receive 10 mg/kg NTG every other day for 9 days. Cortical spreading depression (CSD), a physiological corelate of migraine aura, was evoked in anesthetized mice using KCl. CRPS was induced by tibial fracture followed by casting. Neuronal cytoarchitecture was visualized with Golgi stain and analyzed with Simple Neurite Tracer. RESULTS: In the NTG model, we previously showed decreased neuronal complexity in the trigeminal nucleus caudalis (TNC) and periaqueductal gray (PAG). In contrast, we found increased neuronal complexity in the thalamus and no change in the amygdala or caudate putamen in this study. Following CSD, we observed decreased neuronal complexity in the PAG, in line with decreases in the somatosensory cortex and TNC reported with this model previously. In the CRPS model there was decreased neuronal complexity in the hippocampus, as reported by others; increased complexity in the PAG; and no change within the somatosensory cortex. CONCLUSIONS: Collectively these results demonstrate that alterations in neuronal complexity are a feature of both chronic migraine and chronic CRPS. However, each type of pain presents a unique cytoarchitectural signature, which may provide insight on how these pain states differentially transition from acute to chronic conditions.


Subject(s)
Complex Regional Pain Syndromes , Cortical Spreading Depression , Migraine Disorders , Animals , Cortical Spreading Depression/physiology , Disease Models, Animal , Headache , Mice , Migraine Disorders/drug therapy , Nitroglycerin/adverse effects
2.
Headache ; 61(1): 170-178, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33326598

ABSTRACT

OBJECTIVE: The aim of this study was to determine if the non-convulsant delta-opioid receptor (DOR) agonist, KNT-127, could inhibit migraine-associated endpoints. BACKGROUND: The DOR has been identified as a therapeutic target for migraine. However, the development of delta agonists is limited as some ligands have seizurogenic properties, which may be related to their ability to induce receptor internalization. While both pro- and non-convulsant delta agonists can reduce migraine-associated allodynia, only the proconvulsant agonist, SNC80, has been shown to decrease cortical spreading depression (CSD). It is unclear if the ability of delta agonists to modulate cortical activity is related to the same signaling mechanisms that produce proconvulsant effects. METHODS: The effects of the non-convulsant delta agonist, KNT-127, were examined. Repetitive CSD was induced in female C57BL6/J (n = 6/group) mice by continuous application of KCl and the effect of KNT-127/vehicle (Veh) on both local field potentials and optical intrinsic signals was determined. To assess the effect of KNT-127 on established chronic migraine-associated pain, male and female C57BL6/J mice were treated with nitroglycerin (NTG; 10 mg/kg, ip) every other day for 9 days and tested with KNT-127 (5 mg/kg, sc) or Veh on day 10 (n = 6/group). DOR-enhanced green fluorescent protein mice (n = 4/group) were used to confirm the internalization properties of KNT-127 in the trigeminal ganglia, trigeminal nucleus caudalis, and somatosensory cortex. RESULTS: KNT-127 inhibited CSD events (t(10)  = 3.570, p = 0.0051). In addition, this delta agonist also reversed established cephalic allodynia in the NTG model of chronic migraine (F(1, 20)  = 12.80, p < 0.01). Furthermore, KNT-127 caused limited internalization of DOR in key migraine processing regions. CONCLUSIONS: This study shows that the antimigraine effects of DOR agonists can be separated from their proconvulsant effects. This data provides valuable information for the continued development of delta agonists for the treatment of migraine.


Subject(s)
Analgesics, Opioid/pharmacology , Cortical Spreading Depression/drug effects , Hyperalgesia/drug therapy , Migraine Disorders/drug therapy , Morphinans/pharmacology , Receptors, Opioid, delta/agonists , Analgesics, Opioid/administration & dosage , Animals , Disease Models, Animal , Female , Hyperalgesia/chemically induced , Male , Mice , Mice, Inbred C57BL , Morphinans/administration & dosage , Nitroglycerin/pharmacology , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL